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Semantics for a wide class of strictly positive data types.

A container1            consists of a set of shapes     and a family of 
positions                        .

Containers can be interpreted as functors on Set  

This interpretation is functorial, and fully-faithful.

Containers

1[Abbott et al. 2005]

Visualised: the “Id” container 
(one shape, one position)
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An element of                   consists of a shape           and a map                       .

Container interpretation
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We can think of 
these using 

triangle diagrams.

The shape

A generic position

Data stored at this 
position
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Containers are closed under composition.

Containers compose
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Intuition in terms of 
triangle diagrams:
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Containers are closed under composition.

Containers compose
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The composite shape data

Intuition in terms of 
triangle diagrams:
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specified by a pair
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Monadic containers
Briefly: “containers whose functor interpretation carries a monad structure”

A monadic container1 is a container            along with the data:

1[Uustalu 2017]
+ 8 monoid-esque equalities

Monadic containers are in 
bijection with monads on 
Set whose underlying 
functor is a container1.
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Monadic containers
Briefly: “containers whose functor interpretation carries a monad structure”

A monadic container1 is a container            along with the data:

1[Uustalu 2017]
+ 8 monoid-esque equalities

Monadic containers are in 
bijection with monads on 
Set whose underlying 
functor is a container1.

This specifies the monad unit
These specify the 
monad multiplication
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Monadic containers

s

p

“A shape-full of 
shapes is a shape”
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Monadic containers
One example is the coproduct monadic 
container:
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Monadic containers
One example is the coproduct monadic 
container:
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Composing monadic containers…? 

h p1 q1 p2

g p1 q1 

f p1

s
Suppose we 
want to define 
“multiplication” 
maps (    and 
pr) for a 
composite 
container…
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Composing monadic containers…? 

h p1 q1 p2

g p1 q1 

f p1

s

Can now 
“multiply” using 
the     for each 
monadic 
container

Suppose we 
want to define 
“multiplication” 
maps (    and 
pr) for a 
composite 
container…

Monadic container 
distributive law

s
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“... it can be rather difficult to prove the defining 
axioms of a distributive law.” 

[Bonsangue et al. 2015]

Monadic container distributive laws

[Beck 1969]
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For example, there is a monadic container distributive law of any monadic container
                            over the coproduct monadic container:

Monadic container distributive laws
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p p
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For example, there is a monadic container distributive law of any monadic container
                            over the coproduct monadic container:

Monadic container distributive laws

s

p

s

p p

Lemma: it is the unique one of this type!
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Given a distributive law, we can construct the 
composite monadic container:

Composite monadic container

This is analogous to the composite monoid 
(Zappa–Szép product) obtained from a matching 
pair:
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Matching pairs
Given two monoids:

A matching pair is a pair of monoid 
actions:

such that the following equalities hold:
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We can see cartesian monadic containers as Tarski-style type universes1 closed under singleton 
and dependent sum types.

Under this lens, the distributive law on slide 9 becomes a uniform way to extend a type universe 
with refinement types.

Cartesian monadic containers and type universes

is a code

is the type (set) coded for by

is a code

is the type coded for by
12 1[Altenkirch and Pinyo 2017]
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Under this lens, the distributive law on slide 9 becomes a uniform way to extend a type universe 
with refinement types. 

The codes for singleton and dependent sum types in the “refinement type” universe: 

Cartesian monadic containers and type universes

is a code

is the type coded for by
Elements of        for which the predicate holds
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We can see cartesian monadic containers as Tarski-style type universes closed under singleton 
and dependent sum types.

Further work: adapt monadic container distributive laws to distributive laws between type universes 
with singleton, dependent sum and dependent product types. 

Cartesian monadic containers and type universes

is a code

is the type (set) coded for by
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Container characterisation landscape

Monadic containers
(containers with monad structure)

[Uustalu 2017]

Directed containers
(containers with comonad structure)

[Ahman et al. 2012]

Directed container distributive laws
(characterisation of comonad distributive laws 

in terms of directed containers)
[Ahman and Uustalu 2013]
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Container characterisation landscape

Monadic containers
(containers with monad structure)

[Uustalu 2017]

Directed containers
(containers with comonad structure)

[Ahman et al. 2012]

Monadic container distributive laws
(characterisation of monad distributive laws in 

terms of monadic containers)

Directed container distributive laws
(characterisation of comonad distributive laws 

in terms of directed containers)
[Ahman and Uustalu 2013]

Mixed (monadic-directed, directed-monadic) container distributive laws
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Corresponding monoid structures
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A “functional monoid action” is a map                                                 satisfying:

Corresponding monoid structures
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Cubical Agda formalisation
This characterisation is good for formalising distributive laws in Cubical Agda.
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Proof that the reader directed container over writer 
monadic container mixed distributive law is unique.



Cubical Agda formalisation
This characterisation is good for formalising distributive laws in Cubical Agda.
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All other equalities hold 
trivially!

Proof that the reader directed container over writer 
monadic container mixed distributive law is unique.



Summary

Our contributions:

- Characterisation of monadic container 
distributive laws

- Characterisation of mixed container distributive 
laws (monadic-directed and directed-monadic)

- Uniqueness proofs for various (simple) monadic 
and mixed container distributive laws

- A no-go theorem for monadic container 
distributive laws [Zwart and Marsden 2018]

- Formalisation in Cubical Agda of the 
characterisation and proofs of uniqueness

Thank you!
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Future work:

- Extend distributive laws between cartesian 
monadic containers (type universes) to those 
with codes for dependent products

- Explore further no-go theorems

- Extend all characterisations to groupoid and 
categorical containers [Gylterud 2011]

Link to our paper

 
www.arxiv.org/abs/2503.17191

 


