
Introduction to Functional Programming

Chris Purdy

March 4, 2024

1 Getting started with GHCi

To get started with Haskell quickly and follow along with the lecture, use my
replit: https: // replit. com/ @ChrisPurdy1/ IntroToFP

Programs in Haskell are typically written in “.hs” files, and programs
consist of type declarations and function definitions.

module Example where

add : : Int −> (Int −> Int)
add 0 m = m
add n m = 1 + (add (n − 1) m)

−− Main entry−po in t o f compi led e x e cu t a b l e
main : : IO ()
main = print (add 7 8)

A basic template for a Haskell program (in a file called
“Example.hs”)

The first line declares our collection of functions as a Haskell module,
and - - (double-dash) can be used for a single line comment.

We use the Glasgow Haskell Compiler (GHC) to compile Haskell pro-
grams. GHC also comes with GHCi, an interactive REPL (read-eval-print
loop).

GHCi is run with the ghci command; you can install the Haskell toolchain
(including ghci) at https://www.haskell.org/ghcup/.

Prelude> : l Example . hs
. . .
∗Example> f = add 10

1

https://replit.com/@ChrisPurdy1/IntroToFP
https://www.haskell.org/ghcup/

∗Example> f 5
15
∗Example> g = \x −> x ∗ 7
∗Example> g 7
49
∗Example> : t g
g : : Num a => a −> a

An example GHCi session

Notice how “add” was defined in Example.hs, and that I had access to
the “add” function in GHCi after loading the file. Here are a few commands
that you may find useful:

• :l [filename] - loads a given Haskell file

• :q - quits GHCi

• :t [expression] - gives the type of a given expression

In particular, the :t command will be useful to explore how Haskell
infers the type of expressions. Some example types and what they mean:

Type Example expression/term Description

Int 4 Integers/whole numbers

Char ’u’
Individual characters (the single
quotes are important)

Int -> Char \x -> if x == 0 then ’n’ else ’y’
Functions that take an Int as in-
put, and produce a Char as output

(Int, String) (7, "lucky")
Ordered pairs of strings and inte-
gers

Num a => a -> a \n -> n * 7

Functions with type a as input
and type a as output, where a is
a numerical type (such as Int or
Float)

Don’t worry if you don’t understand the last example above, but here is
some further explanation if you are interested:

For the last type in the table Num a => a -> a, the a is called a type
variable, and you use these to define polymorphic functions - these are func-
tions that can have many different types for their input and/or output. The
Num a to the left of the => symbol is called a type constraint - it constrains
the possible types that a could be to “numeric” ones.

2

2 Functions

Here are some example Haskell functions that operate on integers and pairs
of integers:

f s t : : (Int , Int) −> Int
f s t (a , b) = a

snd : : (Int , Int) −> Int
snd (a , b) = b

add : : Int −> (Int −> Int)
add 0 m = m
add n m = 1 + (add (n − 1) m)

add10 : : Int −> Int
add10 = add 10

fo rk : : (Int −> Int , Int −> Int) −> (Int −> (Int , Int))
f o rk (f , g) n = (f n , g n)

tens : : (Int , Int) −> Int
tens p = ((f s t p) ‘div ‘ 10) + ((snd p) ‘div ‘ 10)

twice : : (Int −> Int) −> (Int −> Int)
twice f n = f (f n)

For these exercises, assume that all numerical inputs are non-negative
integers (otherwise known as natural numbers) - I’ll give some examples
later of how you can handle erroneous inputs.

Exercises

• Explain what the “tens” function does in natural language.

• Define the function “thrice” that takes a function of type Int -> Int,
and applies it three times in a row.

• Define multiplication and exponentiation recursively (similarly to how
“add” is defined above).

It helps if you think of, for example 3×5, as “3 added to itself 5 times”.

• Define the function “applyTo5” with type (Int -> Int) -> Int, that
takes as input a function, and returns the result of the function applied
to 5.

For example applyTo5 add10 should evaluate to 15.

3

• Define “thrice” using function composition (the . operator)

• Extension - Show that fork (f , g) . h = fork (f . h) (g .

h), by unfolding the definitions on both sides of the equality.

Start by considering an input x, and then unfolding/executing ((fork

(f , g)) . h) x and fork ((f . h), (g . h)) x until both
reach the same point - this shows that they are equivalent.

3 More resources

A fantastic introductory course to Haskell, with plenty of exercises, can be
found at https://learnyouahaskell.com/chapters.

If you are comfortable with Haskell already and want something ex-
tremely hardcore to study, here is a great introduction to category theory
(one of my areas of research) by Bartosz Milewski that uses (pseudo-)Haskell
in examples and exercises: https://bartoszmilewski.com/2014/10/28/

category-theory-for-programmers-the-preface/

4

https://learnyouahaskell.com/chapters
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/

	Getting started with GHCi
	Functions
	More resources

