Monsters and Lax Sigma-universes
Chris Purdy (Royal Holloway University of London)

Monsters and their properties

Monadic streams are a generalisation of the stream data type:

SIdA =vX.Ax X
SpA == vX.M(A x X)

They are parameterised by a functor M, and can be instantiated to many in-
teresting (non-well founded) data types.

For example:
o If M =1+ —, then Sy, is the lazy list functor

e Sp_,_A is the type of potentially infinite state machines with input al-
phabet R and output alphabet A

e S10A is the type of (never-terminating) processes that output elements of
type A

e Spist A is the type of non-well-founded branch-labelled trees over A.

Monsters and their properties

I have been interested in studying the theoretical properties of monadic streams
(or "monsters” for short), initially to assist in designing a Haskell library of
helper functions for monsters, and more recently just for the sheer fun/hell of
it

In particular, I wanted to know how different structures over M relate to those
over Sys. Inspired by typical Haskell type classes, I pursued the following ques-
tions:

e If M is a functor. is S also? Fairly obvious - a generalisation can be found in Varmo
’ M " Vene’s PhD thesis

Requires the monoid to have a four middle interchange law - this and

e If M is a lax monoidal functor, 18 SM also? the above I’ve formalised in Agda (using agda-categories)

. . If M has representing object R, then M-monsters are representable b
o If M is representable, 1S SM also” non-empty lists of R

e [f M is a monad, is Sps also? Notin general - the state monad is a counter-example
SmA:=vX.M(A x X)

A brief monad refresher

A monad is a triple (M, n,), where M : C — C is a functor, and n: 1 = M
and p: M o M = M are natural transformations obeying the following laws:

M M
M MoM 1 M
e J{“ e Left and right identity laws
id]\/_[\\>& k//

" idy
M

MoMoM M MoM
uMl lp, Associativity law

MOMT>M

This makes M a monoidal object in the endofunctor category [C,C].

Why could 1t be a monad?

The fourth question was inspired by the fact that pure streams Syq form a
monad:

out (na a) :=a,n4 a
out (ua ss) := head (head ss),pua ((Syq tail) (tail ss))

Intuitively, na repeats indefinitely the given element of A, and pua takes the
diagonal of a stream of streams.

out=(head,tail)

SA » A X SA
MAT TidA X pA
S(SA) —— SA x S(SA) A x S(SA)

_/r

head X (S tail)
p for pure streams SmA :=vX.M(Ax X)

Why could 1t be a monad?

S A out s M(A x SprA)
MSAA/[/\

Sy (SMA)

out

-

M (ida x poM)
M(SMA X SM<S]V[A)

M (head™ x (Sar tail™))

M(M A X SM(SMA)) m) M(M(A X SM(SMA))) M—> M(A X SM(SMA))

AXSpr(SprA)

p for monadic streams over M. Notice that if M = Id this degenerates to the
above square for pure streams

Where head and tail for monsters can be defined as follows:
head% := M oout

taﬂ% =N o /J']JXIXSMA o M (out o ms) o out

SpA = vX.M(A x X)

Monad counter-example

n°™ and p°M are not law-abiding in general. It is fairly easy to construct a
counter-example for the left-unit and associativity laws using the state monad

M=S§S—-—xS6§.
Concretely, if you choose S = N and define the following state-monster:

out(s n) = dm.((m,s (n+1)),m +n)
You will find that the left-identity law doesn’t hold:

p (g (s 1)) # s 1

This can be seen by "unfolding” the state-monsters on the left and right of the
equation.

Ssﬁ(_xs) A=vXS5S—> ((A X X) X S)

Revising the theorem

The question then became, what is the weakest restriction on M such that
Sy is a monad? Since all representable functors are monads, I knew that M
being representable was one possible restriction, so I decided to check whether
that was the weakest one - i.e. show that M is representable if and only if Sy,
is a monad.

I first tackled this problem via brute force and commuting diagrams, but I
found I couldn’t get my hands on a possible representing object. So I went
for a different approach, based on the fact that we are restricting our view to
container functors, and after coming across the slides for Thorsten’s 2018 talk
”Monadic containers and universes”:

A brief container refresher

Container functors (polynomial functors on Set) are a class of strictly-positive
type, for which fixed-points are guaranteed to exist. A container S < P is given
by:

e A set S of "shapes”
e A family P : S — Set of "positions”

You can interpret a container S < P as a functor:

[SaP]A:=) Ps— A
s:S

[S<P] f(s,9):=(s,fog)

A container’s set of shapes is a singleton iff its functor interpretation is repre-
sentable.

Container representation of monsters

Given a container S < P, its monster-container is Mg p <Pathg p where Mg p is
the greatest fixed-point of [S < P], and Pathg p is defined inductively by:

a:Mgp
p : P(head a)
end p : Paths p a
head a
p : P(head a) v : Pathg p (a at p) P

step (p,7) : Pathg p a
where a : Mg p, and:
e (head a) : S is the "root” of a
e (a at p) : Mg p is the "sub-tree” of a at position p : P(head a)

These are just the destructor of Mg p split into two maps
J ,

Lax Sigma-universes

Lax Y-universes are another perspective on monadic containers, where you can
reason algebraically about the shapes and positions. A lax Y-universe is given

by:
U : Set
El: U — Set
LU
o:llyy.(Ela—-U)—>U
pr:El (0 ab) = X5 El(b x)
Such that: a ® b is shorthand for o a (A_.b)
a®@L=a pr; is shorthand for 7; o pr
L®b="b

oca (Ao (bz) (cx)) =0 (0 ab) (Ax.c (pryx) (praz))

There is a bijection between lax Y-universes and monadic containers [U < El].

A monster universe

Given a lax X-universe for S < P, we can now define the lax X-universe for
Ms, p < Pathg p that corresponds to the monad definition for Sj; given earlier.

head 15 := ¢

lses 86 —. = B

head (tailo a) := o (head a) (Ap.head (a at p))
(tailo a) at p := (a at (pr; p)) at (pry p)

head (0o a b) := o (head a) (Ap.head (b (end p)))
(0oo a b) at p := 04 (a at (pry p)) (Ay.tailo (b (step (pry p,7))))

A monster universe - making sense of tailo

head (tailo a) := o (head a) (Ap.head (a at p))
(tailo a) at p := (a at (pry; p)) at (pry p)

a: Ms,p tailo a

A 0 s’
7\ O-
l \‘ V2R

p II \\ q /I \\

0 ,/ \\ 0) /I \\ ’
II \ p /I \\
S, S,
VA

Where pr p/ — (p07p1)7 and pr q/ — (QO7QI)

A monster universe - making sense of 0

head (04 a b) := o (head a) (Ap.head (b (end p)))
(0o a b) at p:= 0o (a at (pry p)) (My.tailo (b (step (p,7))))

WORK IN PROGRESY

A monster universe - left-unit law

Recall that at this point, we are trying to prove that [S < P] is representable, if
its monster-container is a monad. For the latter to be the case, we require that
these definitions obey (among other things) the left-identity law:

G bew (Asll) =T
It turns out that this law holds iff the following equation does:
a at p = tailo a

which is quite a strong requirement!

Concluding the proof
This is where things get non-constructive. We can proceed by considering two
cases:

e For all s: S, P s has at least one element

e There is at least one s : .S, where P s is empty

In the first case, we can prove that for all s: .S, s =¢. This means that [S < P]
is representable by P !

In the second case, we can construct a counter-example to associativity for
0o, leading to a contradiction.

Further work

There are still some holes in the proof that I would like to fill.

For starters, I've taken it as implied that the only possible definition of u for
Sy is taking the diagonal (in a specific way). I have a partial proof of there
being a unique monad definition for pure streams, which might imply that there
only one definition of u that works, but formalising this seems difficult.

The translation of functions on Sy;A to functions within the lax Y-universe
for monster-containers also needs to be formalised.

