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What is a monadic stream?
A stream is an infinite sequence of values. For example, the stream of natural numbers.


                  0, 1, 2, 3, 4, 5, … 

To get to the  element (value) in the stream, you need to ‘traverse’ all of the previous elements. 
A monadic stream is a stream where to access the next element, you need to evaluate an effect.


A pure (normal) stream is a monadic stream without effects, or where the effects don’t do anything.


To get to the  element in a monadic stream, you need to traverse all previous elements and effects.
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Key concepts
Monadic streams are potentially infinite streams of effectful computations. We call these ‘monsters’ for short.


A monad is a functor  (a map from types to types) along with two natural transformations (polymorphic 
structure preserving maps):


                                                                 


                                                                 

Monads (rather, Kleisli arrows) can be thought of as representing effectful computations (Moggi 1991)

One example is the Maybe monad, whose corresponding effect is partiality:


                                          


             


                                     

M

ηA : A → M A

μA : M (M A) → M A

Maybe A = 1 + A

ηA = inr
μA (inl ⋆) = inl ⋆
μA (inr r) = r



Maybe-monster
By instantiating our type of monadic streams with the Maybe monad, we get the type of Maybe-
monsters.


  

  

By expanding an element of , we can see that the type is isomorphic to that of possibly 
infinite lists (sometimes called colists)  

        

    

   [1, 2, 3, 4]

𝕊Maybe ℕ

inr (1, inr (2, inr (3, inr (4, inl ⋆))))
≅

List ≅ 𝕊Maybe



Reader-monster
Another example is the Reader-monster.

  

                                                                              

Kleisli arrows for this monad represent computations that read from a shared environment of type .


The type  corresponds to that of possibly-infinite-state automata.


This can (almost) be seen by unfolding the type definition, dropping constructors to reduce clutter. 

              

The first function, when evaluated, returns a result of type  and a continuation. Both of these can depend on the 
choice of element in . The function at the head of a Reader-monster is its current ‘state’.

ReaderE A = E → A

E

𝕊ReaderE

E → (A × (E → (A × (E → (A × . . .

A
E



Why this is interesting
Different kinds of coinductive data structures are represented by instantiations of monsters with different 
monads.


Maybe monad gives us lazy lists, Reader monad gives us state machines, List monad gives us trees, IO monad 
gives us interactive processes, and so on.


“We should try to define functions on monsters that are polymorphic in the monad, that instantiate to 
operations on each of these data types.”


With this in mind, we have developed a library of generalised operations on monadic streams, called 
monster.



Why this is interesting

Many are liftings of common operations on lists and streams (zips, scans, filtering, etc.).


Correspondences between instances of monsters and other data structures inspired more context 
specific functions (included in the Examples module of our library). Future work will focus on these specific 
applications.


We also define operations on monsters where the underlying functor is not a monad, and instead has different 
structure (applicative, traversable, foldable, representable, etc.).




Example: scan
The Haskell standard library version:

             scan (+) 0 [1, 2, 3, 4, 5] = [0, 1, 3, 6, 10, 15] 

Using the correspondence between lists and Maybe-monsters, we can generalise scan to any monadic stream. 

Take a basic state machine (Reader-monster) that performs one-dimensional edge detection. Let’s suppose 
you want the running total of the edges detected. You can do this using the generalised scan function.


runSM edgeDetector [I,I,O,O,I,O,O,O,I,O] =  
["No edge”, "No edge”, "Edge detected”, "No edge”, "Edge detected", 

 "Edge detected”, "No edge”, "No edge”, "Edge detected”, “Edge detected”] 

edgeCounter = scan {add 1 if "Edge detected"} 0 edgeDetector 
 

runSM edgeCounter [I,I,O,O,I,O,O,O,I,O] = [0,0,1,1,2,3,3,3,3,3,4,5]



scan use cases
Another use case is calculating sequential probabilities in probability trees.


probTree =  

Suppose you wanted to calculate the probabilities of blue then red, yellow then red, purple then blue etc. 


f probTree = 

  f = ???



scan use cases
This can be done again using scan.


We can do this because (branch-labelled) trees correspond to List-monsters.


                                data BLTree a = MonStr [] a 

By scanning the tree with multiplication, we get a tree where the probability at each branch is the probability given 
all of the choices preceding it. 


We can flatten the tree down to its second level (indexed from 0) to inspect it before and after the operation.


probTree !! 1 =  [             Red: (2,6), Yellow: (1,6), Purple: (3,6), 
                      Blue: (1,6), Red: (1,6), Yellow: (1,6), Purple: (3,6), 
                      Blue: (1,6), Red: (2,6),                Purple: (3,6),  
                      Blue: (1,6), Red: (2,6), Yellow: (1,6), Purple: (1,3)]

Tree (branch labelled) ≅ 𝕊List



scan use cases

sProbTree = scan’ (*) probTree 

sProbTree !! 1 =  [             R|B: (2,42), Y|B: (1,42), P|B: (3,42), 
                       B|R: (2,42), R|R: (2,42), Y|R: (2,42), P|R: (6,42), 
                       B|Y: (1,42), R|Y: (2,42),              P|Y: (3,42),  
                       B|P: (3,42), R|P: (6,42), Y|P: (3,42), P|P: (6,42)]



Minimal structure
Depending on the function, we require different structure on the underlying functor. 


It is interesting to try and find the minimal structure required for a particular function:

•zip, turns a pair of monsters into a monster of pairs - the functor must be applicative


•tail, discards the first element of the stream (and ‘absorbs’ the effect) - the functor must be a monad 

•scan (with a starting element) - the functor must be applicative 

•scan’ (without a starting element) - the functor must be a monad


All monads are applicative in Haskell, but not all applicative functors are monads. In that sense, applicative 
functors have “less extra structure” than monads.


Finding the minimal extra structure required for a particular function could give a characterisation of 
coinductive types that support that operation*.



Key results and insights

Our Haskell library monster that implements many functions to operate on general monadic streams. 


Agda formalisations of two proofs with the agda-categories library:


•  is a functor for arbitrary bifunctor  *


•  is a monodial endofunctor on  where  and  is 
equipped with a “four middle interchange” 


These two proofs imply that the type constructor  is:


• An endofunctor, by instantiating  


• A cartesian monoidal endofunctor, by instantiating and  (only when  is cartesian monoidal)

A ↦ νX . A ⊙ X ⊙ : D × C → C
A ↦ νX . F(A ⊗ X) (C, ⊗ ) F : (C, ⊗ ) → (C, ⊗ ) (C, ⊗ )

(X ⊗ Y) ⊗ (A ⊗ B) ≅ (X ⊗ A) ⊗ (Y ⊗ B)

𝕊M

⊙ = M( − × − )
⊗ = × F = M M



Key results and insights

It is not the case that monadic streams are monads if the underlying functor is an arbitrary monad. 
However, they are if the underlying functor is a representable monad.


If the underlying functor is a comonad, then the corresponding monadic stream is itself a comonad.


Monadic streams relate closely to Functional Reactive Programming (FRP), where they model streams 
of input values with side-effects (Perez et al.). Our library can be used in this context to manipulate these 
streams without fixing the side-effect (the monad).


Other FRP constructs also relate to specific cases of monadic streams - monadic stream functions (see 
Dunai) are monadic streams instantiated with the ReaderT monad transformer.



github.com/venanzio/monster

Thank you for listening and to the organisers for a great conference!


