
Chris Purdy and Venanzio Capretta

Monsters: programming and reasoning
A study and implementation of monadic streams

What is a monadic stream?
A stream is an infinite sequence of values. For example, the stream of natural numbers.

 0, 1, 2, 3, 4, 5, …

To get to the element (value) in the stream, you need to ‘traverse’ all of the previous elements.
A monadic stream is a stream where to access the next element, you need to evaluate an effect.

A pure (normal) stream is a monadic stream without effects, or where the effects don’t do anything.

To get to the element in a monadic stream, you need to traverse all previous elements and effects.

𝑛𝑡h

𝑛𝑡h

Key concepts
Monadic streams are potentially infinite streams of effectful computations. We call these ‘monsters’ for short.

A monad is a functor (a map from types to types) along with two natural transformations (polymorphic
structure preserving maps):

Monads (rather, Kleisli arrows) can be thought of as representing effectful computations (Moggi 1991)

One example is the Maybe monad, whose corresponding effect is partiality:

M

ηA : A → M A

μA : M (M A) → M A

Maybe A = 1 + A

ηA = inr
μA (inl ⋆) = inl ⋆
μA (inr r) = r

Maybe-monster
By instantiating our type of monadic streams with the Maybe monad, we get the type of Maybe-
monsters.

By expanding an element of , we can see that the type is isomorphic to that of possibly
infinite lists (sometimes called colists)

 [1, 2, 3, 4]

𝕊Maybe ℕ

inr (1, inr (2, inr (3, inr (4, inl ⋆))))
≅

List ≅ 𝕊Maybe

Reader-monster
Another example is the Reader-monster.

Kleisli arrows for this monad represent computations that read from a shared environment of type .

The type corresponds to that of possibly-infinite-state automata.

This can (almost) be seen by unfolding the type definition, dropping constructors to reduce clutter. 

The first function, when evaluated, returns a result of type and a continuation. Both of these can depend on the
choice of element in . The function at the head of a Reader-monster is its current ‘state’.

ReaderE A = E → A

E

𝕊ReaderE

E → (A × (E → (A × (E → (A × . . .

A
E

Why this is interesting
Different kinds of coinductive data structures are represented by instantiations of monsters with different
monads.

Maybe monad gives us lazy lists, Reader monad gives us state machines, List monad gives us trees, IO monad
gives us interactive processes, and so on.

“We should try to define functions on monsters that are polymorphic in the monad, that instantiate to
operations on each of these data types.”

With this in mind, we have developed a library of generalised operations on monadic streams, called
monster.

Why this is interesting

Many are liftings of common operations on lists and streams (zips, scans, filtering, etc.).

Correspondences between instances of monsters and other data structures inspired more context
specific functions (included in the Examples module of our library). Future work will focus on these specific
applications.

We also define operations on monsters where the underlying functor is not a monad, and instead has different
structure (applicative, traversable, foldable, representable, etc.).

Example: scan
The Haskell standard library version:

 scan (+) 0 [1, 2, 3, 4, 5] = [0, 1, 3, 6, 10, 15]

Using the correspondence between lists and Maybe-monsters, we can generalise scan to any monadic stream.

Take a basic state machine (Reader-monster) that performs one-dimensional edge detection. Let’s suppose
you want the running total of the edges detected. You can do this using the generalised scan function.

runSM edgeDetector [I,I,O,O,I,O,O,O,I,O] =
["No edge”, "No edge”, "Edge detected”, "No edge”, "Edge detected", 

 "Edge detected”, "No edge”, "No edge”, "Edge detected”, “Edge detected”]

edgeCounter = scan {add 1 if "Edge detected"} 0 edgeDetector
 

runSM edgeCounter [I,I,O,O,I,O,O,O,I,O] = [0,0,1,1,2,3,3,3,3,3,4,5]

scan use cases
Another use case is calculating sequential probabilities in probability trees.

probTree =

Suppose you wanted to calculate the probabilities of blue then red, yellow then red, purple then blue etc.

f probTree =

 f = ???

scan use cases
This can be done again using scan.

We can do this because (branch-labelled) trees correspond to List-monsters.

 data BLTree a = MonStr [] a

By scanning the tree with multiplication, we get a tree where the probability at each branch is the probability given
all of the choices preceding it.

We can flatten the tree down to its second level (indexed from 0) to inspect it before and after the operation.

probTree !! 1 = [Red: (2,6), Yellow: (1,6), Purple: (3,6), 
 Blue: (1,6), Red: (1,6), Yellow: (1,6), Purple: (3,6), 
 Blue: (1,6), Red: (2,6), Purple: (3,6),  
 Blue: (1,6), Red: (2,6), Yellow: (1,6), Purple: (1,3)]

Tree (branch labelled) ≅ 𝕊List

scan use cases

sProbTree = scan’ (*) probTree

sProbTree !! 1 = [R|B: (2,42), Y|B: (1,42), P|B: (3,42), 
 B|R: (2,42), R|R: (2,42), Y|R: (2,42), P|R: (6,42), 
 B|Y: (1,42), R|Y: (2,42), P|Y: (3,42),  
 B|P: (3,42), R|P: (6,42), Y|P: (3,42), P|P: (6,42)]

Minimal structure
Depending on the function, we require different structure on the underlying functor.

It is interesting to try and find the minimal structure required for a particular function:

•zip, turns a pair of monsters into a monster of pairs - the functor must be applicative

•tail, discards the first element of the stream (and ‘absorbs’ the effect) - the functor must be a monad

•scan (with a starting element) - the functor must be applicative

•scan’ (without a starting element) - the functor must be a monad

All monads are applicative in Haskell, but not all applicative functors are monads. In that sense, applicative
functors have “less extra structure” than monads.

Finding the minimal extra structure required for a particular function could give a characterisation of
coinductive types that support that operation*.

Key results and insights

Our Haskell library monster that implements many functions to operate on general monadic streams.

Agda formalisations of two proofs with the agda-categories library:

• is a functor for arbitrary bifunctor *

• is a monodial endofunctor on where and is
equipped with a “four middle interchange”

These two proofs imply that the type constructor is:

• An endofunctor, by instantiating

• A cartesian monoidal endofunctor, by instantiating and (only when is cartesian monoidal)

A ↦ νX . A ⊙ X ⊙ : D × C → C
A ↦ νX . F(A ⊗ X) (C, ⊗) F : (C, ⊗) → (C, ⊗) (C, ⊗)

(X ⊗ Y) ⊗ (A ⊗ B) ≅ (X ⊗ A) ⊗ (Y ⊗ B)

𝕊M

⊙ = M(− × −)
⊗ = × F = M M

Key results and insights

It is not the case that monadic streams are monads if the underlying functor is an arbitrary monad.
However, they are if the underlying functor is a representable monad.

If the underlying functor is a comonad, then the corresponding monadic stream is itself a comonad.

Monadic streams relate closely to Functional Reactive Programming (FRP), where they model streams
of input values with side-effects (Perez et al.). Our library can be used in this context to manipulate these
streams without fixing the side-effect (the monad).

Other FRP constructs also relate to specific cases of monadic streams - monadic stream functions (see
Dunai) are monadic streams instantiated with the ReaderT monad transformer.

github.com/venanzio/monster

Thank you for listening and to the organisers for a great conference!

