
μHOLex, a cyclic proof system for
higher-order fixed point logic

Chris Purdy, Reuben Rowe - Royal Holloway, University of London

Our goal

“Develop a cyclic meta-theoretic basis
for a proof assistant.”

HOL
μ

∃α

μHOLex

Higher-order Fixed points

Ordinal approximationsCyclic deduction
system

λ

Computational interpretation

α

There must be some progress
along each cycle - progress is
specified by a trace condition.

In many deductive systems,
proofs are finite derivation trees.

Cyclic proofs are regular
non-well-founded derivation trees.

Cyclic proofs vs. finite proofs

A cyclic proof

For an inductive definition set, we can (systematically) derive a corresponding
explicit induction rule:

Explicit induction rules

Notice how we have to choose a inductive invariant F.

A proof of the statement on the previous slide using explicit induction rules like this
(and no cycles) requires a choice of F - this is less than ideal for proof search.

Case/(Un)folding rules

In cyclic systems, you replace explicit induction rules with case/(un)folding rules
and cycles:

No invariant
required!

Inductive
predicate exists
in the premise

Why do we require a trace condition?

Cyclic pre-proof ✔
> Proof is locally well-formed

Cyclic proof ✘
> Global trace condition is not satisfied
for the left cycle

This trace doesn’t progress!

Systems with (least) fixed-point operators also allow for the definition of inductive
predicates:

Must be positive in X!

Inductive predicates → fixed-point operators

The language of μHOLex

Higher-order logic1

Fixed-point operators and
ordinal approximations2

Type system with variances3

1 [Barendregt & Geuvers, 2001] 3 [Viswanathan & Viswanathan, 2004]2 [Sprenger & Dam, 2003]

Deduction system

Our deduction system extends the natural deduction style system of HOL with
rules for fixed-points and fixed-point approximations:

Rules for fixed-points Rules for fixed-point approximations

Deduction system

We have rules to convert between least fixed-points and their approximations:

We trace free ordinal variables

Our trace condition

A trace progresses when we
have a formula in the
context, allowing us to switch
from tracing to tracing

Proof reduction → computational interpretation

In natural deduction style systems, there is often a good notion of proof reduction:

Proofs-as-programs
interpretation

HOL

λHOL1

Move the direct
proof of here

1 [Barendregt & Geuvers, 2001]

Some finite proof tree,
where the cycle has been

“unravelled”

Our proofs can contain cycles, so we need to extend the notion of reduction (and
our proofs-as-programs interpretation). For example, we want the following:

Proof reduction → computational interpretation

*

Proof reduction → computational interpretation

*

Proof reduction → computational interpretation

Represent cycles with
recursion operators1

A form of pattern matching for elimination
of ordinal approximation types

1 [Barlucchi, 2022] 2 [Barthe et al., 2004]

Proof reduction → computational interpretation

The trace condition
becomes a type-based
termination argument
under the proofs-as-
programs interpretation.

PaP

Proof reduction → computational interpretation

*

PaP

Proof reduction → computational interpretation

stuck?

PaP

Proof reduction → computational interpretation

⇔
An extra axiom…?

*

Recap

We’ve discussed:

- Some background on cyclic proof theory
- Related systems and work we’ve built on
- The language and deduction system of

μHOLex

- Our trace condition using ordinal
approximations

- Sketches of a computational interpretation for
μHOLex

Thank you for listening! :)

Further work:

- Complete the computational interpretation of
μHOLex

- Study the system without explicit
approximations (μHOL)

- Study the addition of fixed-point types and
recursion operators (fix) to general PTS

- Study other links to existing systems
(λ^, CoLF, Agda with sized types)

In a first-order system, terms like this would not be* definiable:

Notice that f is a predicate over predicates over N.

Depending on f, this fixed-point is either the total or empty predicate on N - this is
provable within our system.

Expressivity of higher-order logic

