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Our goal

“Develop a cyclic meta-theoretic basis
for a proof assistant.”

Higher-order Fixed points

Cyclic deduction

Ordinal approximations
system PP

Computational interpretation



There must be some progress
along each cycle - progress is
specified by a trace condition.

Cyclic proofs vs. finite proofs
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In many deductive systems, Cyclic proofs are regular
proofs are finite derivation trees. non-well-founded derivation trees.




A cyclic proof
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Explicit induction rules

For an inductive definition set, we can (systematically) derive a corresponding
explicit induction rule:

['HF(0)  T,F(z)F[F(succz) T, F(t)F ¢
', Nat(t) F ¢

(IndNat )

Notice how we have to choose a inductive invariant F.

A proof of the statement on the previous slide using explicit induction rules like this
(and no cycles) requires a choice of I - this is less than ideal for proof search.



Case/(Un)folding rules

In cyclic systems, you replace explicit induction rules with case/(un)folding rules
and cycles:

[t=0F¢ [',t = succ x,|Nat(x) - ¢ (Casexar) No invariant
T, Nat(t) F ¢ S required!
Inductive It=0F¢  T,t=succz,0dd(z)|F ¢
predicate exists (Casegven)

[',Even(t) F ¢

in the premise




Why do we require a trace condition?

This trace doesn’t progress!

Bad
Bad
Cyclic pre-proof v Cyclic proof X
> Proof is locally well-formed > Global trace condition is not satisfied

for the left cycle



Inductive predicates — fixed-point operators

Systems with (least) fixed-point operators also allow for the definition of inductive

predicates:
Nat(x)

Nat(0) Nat (succ x)

Nat := pX. A x.x =0V Jy.x = succ y A X(y)
|
|

Must be positive in X!

2y =puX :N=>QAx:N).x=yVIz: N).x=succ z A X(2)



The language of yHOL®

Type system with variances®
Fixed-point operators and

. NP
vi=+] — |0 ordinal approximations
o:=a|oo X
to=lz |V(z:T)t|t=1 | X

Tt |ttt || p(x: P)t|Jat]| B <a

Higher-order logic’

! [Barendregt & Geuvers, 2001] 2 [Sprenger & Dam, 2003] 3 [Viswanathan & Viswanathan, 2004]



Deduction system

Our deduction system extends the natural deduction style system of HOL with
rules for fixed-points and fixed-point approximations:

Rules for fixed-point approximations

Tk ¢[u®(X : P).¢/X] % o ' TF3BB<andluP(X:P)o/X] v (fold®) E
Tk (u®(X : P).g) ¢ | TH(ue(X : P).¢) ¢ :
[k (u(X )¢>)@]b (unfola)) [ (u(X : P).g) ¥ nfold®)

T'+38.8 < anef(X: P).o/X] b

[ lu=(X P)¢/



Deduction system

We have rules to convert between least fixed-points and their approximations:




Our trace condition

We trace free ordinal variables
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Proof reduction - computational interpretation

In natural deduction style systems, there is often a good notion of proof reduction:

L e Move the direct HOL
F/, q5 - qﬁ ’\proof of ¢ here
‘. interpretation
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Proofs-as-programs
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! [Barendregt & Geuvers, 2001]



Proof reduction - computational interpretation

Our proofs can contain cycles, so we need to extend the notion of reduction (and
our proofs-as-programs interpretation). For example, we want the following:

_______________________

Some finite proof tree,
| S where the cycle has been
e T, (0 X.0) Y ) “‘unravelled”

[, o (u* X.0) s X .
T, (1°X.9) ¥+ x D — T |_ X

—

TH W Xe)p=x Tk (@e*X.ep)
'y




Proof reduction - computational interpretation

— TH0>0

e !

[, Ja.Nat“(3) F3 >0

D Nat®(3) F 350 Coproch)’ K:::] ) I'-1>0

T+ Nat™®(3) = 3> 0 T F Nat™(3)

I'-3>0 :
I'E22>0

'-3>0



Proof reduction - computational interpretation

Represent cycles with A form of pattern matching for elimination
recursion operators’ of ordinal approximation types
fix* X .t let (o, z) := s in t

____________

[, da.Nat*(3) F3 >0
- = - (approx-L)*
[ Nat*(3)F3>0
[F Nat®(3) = 3 > 0 ['F Nat™(3)
I'=3>0

' [Barlucchi, 2022] ? [Barthe et al., 2004)



Proof reduction - computational interpretation
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Proof reduction - computational interpretation

____________________________________

A& : (1 X.9) ). ¥

ST (X ) Y x

let (o, y) := approx(x) in

Ax® X ¢ <————-—>i T, 3o (uX.0) ¥+ x D i
L (0FX.9) P x |

PaP
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let (ar,y) := approx(promote (¢, s)) in fix® X*.t[promote (¢, s)/x]

\ *
Bup

t[promote (¢, s)/x]|(fix- X-.t)/ X" ||t/a][s/y]



Proof reduction - computational interpretation

__________________

1
=, o
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let (o, y) := approx(z) in'  pap 1 (WX 9) P X D
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let (o, y) := approx(fold s) in fix™ X .t|fold s/x]

stuck?



Proof reduction - computational interpretation
'+ 3a.38.8 < aAduPX.¢/X] ¢

T+ 3o (u®X.4)

—

['E (u>X.0) ¢

(promote)
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CF(u>X.¢) ¢ TF3af<a "V




Recap

We’'ve discussed: Further work:

- Some background on cyclic proof theory - Complete the computational interpretation of

- Related systems and work we’ve built on MHOL®

- The language and deduction system of - Study the system without explicit
MHOL® approximations (WHOL)

- Our trace condition using ordinal - Study the addition of fixed-point types and
approximations recursion operators (fix) to general PTS

- Sketches of a computational interpretation for - Study other links to existing systems
HHOL® (M, CoLF, Agda with sized types)

Thank you for listening! )



Expressivity of higher-order logic

In a first-order system, terms like this would not be* definiable:

fr(N? = Q)F = QFp®(X N’ = Q)Az": N).f X:N° = Q

Notice that fis a predicate over predicates over N.

Depending on £, this fixed-point is either the total or empty predicate on N - this is
provable within our system.



