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Our goal

“Develop a cyclic meta-theoretic basis
for a proof assistant.”
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There must be some progress 
along each cycle - progress is 
specified by a trace condition.

In many deductive systems, 
proofs are finite derivation trees.

Cyclic proofs are regular 
non-well-founded derivation trees.

Cyclic proofs vs. finite proofs



A cyclic proof



For an inductive definition set, we can (systematically) derive a corresponding 
explicit induction rule: 

Explicit induction rules

Notice how we have to choose a inductive invariant F. 

A proof of the statement on the previous slide using explicit induction rules like this 
(and no cycles) requires a choice of F - this is less than ideal for proof search.



Case/(Un)folding rules

In cyclic systems, you replace explicit induction rules with case/(un)folding rules 
and cycles:

No invariant 
required!

Inductive 
predicate exists 
in the premise



Why do we require a trace condition?

Cyclic pre-proof ✔ 
> Proof is locally well-formed

Cyclic proof ✘
> Global trace condition is not satisfied 
for the left cycle 

This trace doesn’t progress!



Systems with (least) fixed-point operators also allow for the definition of inductive 
predicates:

Must be positive in X!

Inductive predicates → fixed-point operators



The language of μHOLex

Higher-order logic1

Fixed-point operators and 
ordinal approximations2 

Type system with variances3  

1 [Barendregt & Geuvers, 2001] 3 [Viswanathan & Viswanathan, 2004]2 [Sprenger & Dam, 2003]



Deduction system

Our deduction system extends the natural deduction style system of HOL with 
rules for fixed-points and fixed-point approximations:

Rules for fixed-points Rules for fixed-point approximations



Deduction system

We have rules to convert between least fixed-points and their approximations:



We trace free ordinal variables

Our trace condition

A trace progresses when we 
have a             formula in the 
context, allowing us to switch 
from tracing     to tracing



Proof reduction → computational interpretation

In natural deduction style systems, there is often a good notion of proof reduction:

Proofs-as-programs 
interpretation

HOL

λHOL1

Move the direct 
proof of     here

1 [Barendregt & Geuvers, 2001]



Some finite proof tree, 
where the cycle has been 

“unravelled” 

Our proofs can contain cycles, so we need to extend the notion of reduction (and 
our proofs-as-programs interpretation). For example, we want the following:

Proof reduction → computational interpretation

*



Proof reduction → computational interpretation

*



Proof reduction → computational interpretation

Represent cycles with 
recursion operators1

A form of pattern matching for elimination 
of ordinal approximation types

1 [Barlucchi, 2022] 2 [Barthe et al., 2004]



Proof reduction → computational interpretation

The trace condition 
becomes a type-based 
termination argument 
under the proofs-as-
programs interpretation.

PaP



Proof reduction → computational interpretation

*

PaP



Proof reduction → computational interpretation

stuck?

PaP



Proof reduction → computational interpretation

⇔
An extra axiom…?

*



Recap

We’ve discussed:

- Some background on cyclic proof theory
- Related systems and work we’ve built on
- The language and deduction system of 

μHOLex

- Our trace condition using ordinal 
approximations

- Sketches of a computational interpretation for 
μHOLex

Thank you for listening! :)

Further work:

- Complete the computational interpretation of 
μHOLex

- Study the system without explicit 
approximations (μHOL)

- Study the addition of fixed-point types and 
recursion operators (fix) to general PTS

- Study other links to existing systems 
(λ^, CoLF, Agda with sized types)



In a first-order system, terms like this would not be* definiable:

Notice that f is a predicate over predicates over N.

Depending on f, this fixed-point is either the total or empty predicate on N - this is 
provable within our system.

Expressivity of higher-order logic


