
Proofs and Programs Club 2024-25
Chris Purdy

λ x . x y

Welcome to PaPC!

The main focus of this club is learning the Agda proof assistant.
Along the way we will learn some basics of functional programming,
formal logic and type theory.
We meet every week on Mondays at 6pm-7/7:30pm.
Join the Discord to ask questions and see guides for getting started
with Agda:

https://discord.gg/8nnqTKCTdK

https://discord.gg/8nnqTKCTdK

Agda (Norell, U. (2009)) is a dependently typed programming language,
that can be used as a proof assistant (software that assists the user
in writing and checking mathematical proofs).

Other proof assistants include Coq, Idris, Lean, Metamath, Isabelle,
NuPRL, etc.

The primary field concerned with development of proof assistants and
dependently typed programming languages is type theory.

Agda and other proof assistants

Agda and other proof assistants

Proof assistants and type theory are of interest to both computer
scientists and mathematicians.

For computer scientists:

- Proving correctness of algorithms and protocols
- Correct-by-construction programming

For mathematicians:

- Computer-assisted formalisation of proofs and constructions
- A common language for (a large portion of) mathematics
- A more refined notion of equality

Functional programming, proof assistants and formal methods in general
are used widely in industry and academia:

- Meta - much of Facebook’s abuse detection system Sigma is written in
Haskell

- CompCert - a C++ compiler that has been formally verified correct
using Coq

- The 4-colour theorem - a famous and very complicated theorem from
graph theory. The proof of this has been formalised in Coq

Learning a bit about these areas is great if you want to write software that
is bug-free and/or provably correct.

Career prospects and summer projects (UROP)

Programming language theory, type theory, proof theory and formal logic
(areas of theoretical computer science related to Agda and proof
assistants) are all active fields of research!

This is what I study for my PhD, and there are plenty of other PhD
opportunities out there related to these topics.

If you find that you enjoy learning Agda and related stuff, you may want to
talk to us about doing a UROP summer project…

Career prospects and summer projects (UROP)

Getting started with Agda

Agda has been installed on NoMachine, along with the agda-mode
VSCode extension.

A template working directory (containing files required for Agda to
work), and tutorial files are stored in the shared directory:

/CS/extracurricular/proofsPrograms

A detailed walkthrough is on the #announcements channel of the
PaPC Discord.

Agda - programming with natural numbers

There is a lot going on here:
- Nat is the type of natural

numbers
- Colon (:) means “is of type”
- Set is the type of “all” types
- zero and suc are

constructors for Nat
- _+_ is the addition function

on natural numbers. It is
recursive.

data Nat : Set where
 zero : Nat
 suc : Nat → Nat

+ : Nat → Nat → Nat
zero + m = m
(suc n) + m = suc (n + m)

three : Nat
three = suc zero + suc (suc zero)

Comparison to other languages

+ : Nat → Nat → Nat
zero + m = m
(suc n) + m = suc (n + m)

def plus(n, m):
 if n == 0:
 return m
 else
 return 1 + plus (n - 1, m)

Agda

Python

Maths

Types and constructors

One way of defining types in
Agda is using the data
construct.

This lets you specify a type by
defining how to build its
elements.

You can “build” any natural
number n by starting with 0,
and adding 1, n times.

data Nat : Set where
 zero : Nat
 suc : Nat → Nat

three : Nat
three = suc (suc (suc zero))

A “real life” Agda proof

A real life Agda proof

This is
about 5%
of the
whole
proof

