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Abstract

A monadic stream is a potentially infinite sequence of values in which
a monadic action is triggered at each step before the generation of the
next element. Monadic actions are a wide class of side effects, modes of
execution, evaluation paradigms; they are realised as functional contain-
ers inside which the unfolding of the stream takes place. Examples of
monadic actions are: executing some input/output interactions, cloning
the process into several parallel computations, executing transformations
on an underlying state, terminating the sequence.

We develop a library of definitions and universal combinators to pro-
gram with monadic streams and we prove several mathematical results
about their behaviour.

We define the type of Monadic Streams (MonStr), dependent on two
arguments: the underlying monad (the kind of possible actions) and the
type of elements of the sequence. We use the following terminology: a
monadic stream with underlying monad M is called an M-monster. The
definition itself doesn’t depend on the fact that the underlying operator
is a monad. We define it generally: some of the operators can be defined
without any assumptions, some others only need the operator to be a
Functor or Applicative Functor. A different set of important combinators
and theoretical results follow from the assumption that the operator is a
Comonad rather than a Monad.

We instantiate the abstract MonStr type with several common mon-
ads (Maybe, List, Reader, State, 10) and show that we obtain well-known
data structures. Maybe-monsters are lazy lists, List-monsters are non-
well-founded finitely branching trees, Reader-monsters are finite state ma-
chines, 10-monsters are interactive processes. We prove equivalences be-
tween the traditional data types and their MonStr versions: the MonStr
combinators instantiate to traditional operations.

Under some assumptions on the underlying functor/monad, we begin
to prove that the MonStr type is also a Functor, an Applicative, a Monad,
or a Comonad, giving us access to the special methods and notations of
those type classes.



1 Introduction

Monadic streams are interesting and powerful ways of programming computa-
tional processes that generate effects.

They encapsulate the notion of (potentially infinite) streams of values, where
traversing a stream from one element to the next can trigger, for example, the
splitting of the process into several streams or the termination of the stream.

Traversing the stream could also require extra inputs, or cause I/O events,
such as printing to the screen or asking for user interaction. These extra com-
putations, among others, come under the umbrella term computational effects
or simply effects.

We will also call these effects monadic actions or just actions, referring to
monads; these, in functional programming, are type constructors whose ele-
ments encapsulate the concept of effectful computations.

To understand monadic streams, we must first look at pure streams.
A pure stream is an infinite sequence of values, for example (using the Haskell
notation that we will introduce later), the stream of all natural numbers:

nats =0<: 1 <2< 3 4 <

The type of pure streams with elements of type a is denoted by Stream a. The
cons operation (<:) is used to append an element in front of an existing stream.
Streams are infinite, so we must use recursion to define them.

For example, the constant stream of ones is defined as

ones = 1 <: ones

The list of natural numbers can be defined as

nats = fromNat O
where fromNat n = n <: fromNat (mt1)

This kind of self-referential definition is called corecursion. It differentiates
from the standard inductive recursion in three ways: first, the recursive calls
are not required the be applied to a smaller argument (in the example we apply
fromNat to n+ 1, which is larger than n); second, there is no need for a base case
where the recursion will terminate; third, the recursive calls must be guarded,
that is, we must ensure that at least part of the result is produced before the
recursive call (here n <: ).

For this to work in practice, corecursive structures (like our stream of nat-
ural numbers above) must be evaluated lazily, meaning ‘only as needed’. The
program will not try to generate the whole stream, but will only produce one
element at a time when required. The lazy evaluation strategy allows definitions
like this in Haskell and other similar programming languages.

A monadic stream is a sequence of values in which every constructor (<:)
is enclosed in a monadic action: to obtain the head (first element) and tail




(continuation) of the stream, we must execute the monadic action.

Their type constructor is called MonStr, so we call them monsters for short.
For example a Maybe-monster is a sequence of elements that is either nothing

(meaning the sequence is finished) or some head element followed by a tail. This

allows us to define both finite and infinite sequences. The definitions of ones

and nats are still valid Maybe-monsters. In addition, we can now define finite

sequences:

1< 2<: 3<: empty

where empty is the Maybe-monster given by the ‘nothing’ action.

Another example is List-monsters, where the effect is to produce a list of
values, which can be thought of as a non-deterministic computation. An element
consists of a list of heads and tails: there may be many (zero or more) branches,
each with its own head and tail. List-monsters are actually arbitrarily branching
trees, with labels (elements) on the branches instead of the nodes:

node [ 5 <: leaf
, 9 <: node [ 1 <: leaf
]
, 2<: node [ 4 <: node [ 3 <: leaf
, 6 <: leaf
]
, 7 <: leaf
]
]

leaf is a tree with no branches (leaf = node []). This example is the List-
monster that corresponds to the tree below. Each branch has its own tail, or
collection of subtrees in this case.

leaf
/
1
node N node —————  leaf
9 leaf
P 3 —
A node
/ \
node 6 leaf

leaf

This is a finite tree, but the trees are allowed to be infinite, in both the
width of the tree (the number of branches at one level), and the depth of the
tree (the length of the longest path from the root to a leaf).

In these two examples, we have used the Maybe and List monads to construct
monsters. The Maybe monad gives the effect of a computation that might



return Nothing; in the case of a Maybe-monster, returning Nothing terminates
the stream. The List monad embodies computations that can return any number
of values; in the case of List-monsters this gives us our arbitrary number of
branches at each level.

One important feature of monads is that consecutive effects can be ‘flat-
tened’, ‘joined’ or ‘sequenced’ into a single one: a list of lists can be concatenated
into a single list.

Some other types of monsters include 10-monsters, which represent interac-
tive processes, and Reader-monsters which represent finite state automata. All
of these variations of monadic stream we have introduced are explained and
expanded on in section 4.

All of our examples will be written in Haskell, and sometimes pseudo-Haskell.
In section 6, where we prove various properties of monsters, we will use Haskell
for equational reasoning, alongside more type theoretic notation for the same
purpose. These two notations are interwoven throughout the article, but the
distinction between them should be clear: all Haskell code is surrounded with
a black bounding box, and displayed in monospace font.

The primary purpose of this paper is to motivate the library we have de-
veloped: an extensive set of combinators and operations on monadic streams,
along with some concrete examples, written in Haskell. This library is envis-
aged as motivation for the potential of monadic streams as a general model of
intensional effectful computations.

This paper acts as a first draft to two separate papers that we are looking
to publish: one addressing the mathematical properties of monadic streams,
and another on how monsters can be used in practice, utilising our Haskell
library. Once finalised and properly documented, the library will be released on
Hackage.

To briefly explain the layout: the next two sections precisely define monadic
streams, and the coindunction principle, the means by which we can prove
properties of monadic streams (and, more generally, corecursive structures).

Section 4 and 5 focus on developing concrete examples, and how specific
functions from our library specialise in the different contexts presented by var-
ious kinds of monsters.

In section 6 we begin to prove categorical properties of monadic streams.

In the final two sections we talk about related work, specifically in Functional
Reactive Programming (FRP), and conclude with open problems and general
reflections.



2 Monadic Streams

A monadic stream is a sequence of values in which every subsequent element is
obtained by triggering a monadic action. If ¢ is such a stream, it will consist of
an action for a certain monad M that, when executed, will return a head (first
element) and a tail (continuation of the stream). This process can be continued
in a non-well-founded way: streams constitute a coinductive type.

Formally the type of streams over a monad M (let’s call them M -monsters)
with elements of type A is defined as:

codata Sy 4 : Set
mconsas ¢ M (A X Spr,a) = S, a

Categorically, we can see this type as the final coalgebra of the functor Fpy X =
M (A x X). We give definitions of (final) coalgebras and a summary of their
properties below. The final coalgebra does not necessarily exist for every M,
but it does for most of the commonly used monads; we discuss this issue below.

The monadic streams definition is a type operator that maps a type A to
the type of M-monsters with elements of type A; we may indicate the operator
by Sas and the type by the slightly different notation (Sps A). This notation
will be useful when we prove properties of the operator, for example that it is a
functor, applicative functor, monad, or comonad, which we do in Section f.

Instantiating M with some of the most well-known monads leads to versions
of known data types or to interesting new constructs.

If we instantiate M with the identity monad, we obtain the type of pure
streams. Its usual definition is the following:

codata S4 : Set
(Q)ZN%SN—)SN.

(The type of the constructor has been curried, as is common.) An element of
S4 is an infinite sequence of elements of A: ag<a; <as <---.

If we instantiate M with the Maybe monad we obtain the type Smaybe, 4,
equivalent to the type of lazy lists List(A). The Maybe monad is a functor that
adds an extra element to the argument type: Maybe X contains copies of each
element x : X, denoted by Just x, plus a empty element Nothing. So Maybe X =
X + 1. The single constructor mconsyaybe : Maybe (A X Smaybe, 4) — SMaybe, 4 18
equivalent to two constructors (for Nothing and Just):

codata List(A) : Set
(<) : A x List(A) — List(A)
nil : List(A).

This means that an element of List(A) is either an empty sequence nil or a non-
empty sequence a <o where a : A and o is recursively an element of List(A).
Since this is a coinductive type, the constructor (<) can be applied an infinite
number of times. Therefore List(A) is the type of finite and infinite sequences.



Another example is when the underlying monad is M = List itself. In this
case each entry in the stream is a list of pairs of heads and tails. This is
equivalent trees of arbitrary branching degrees (finitely branching if we use only
finite lists, but also countably infinite branches if we use lazy lists). Since the
type is coinductive, the trees can be non-well-founded, that is, they may be
infinitely deep.

It is important to make two observations about M.

First, M does not need to be a monad for the definition to make sense. In
fact we will obtain several interesting results when M satisfies weaker conditions,
for example being just a functor. So we will take M to be any type operator
(but see second observation) and we will explicitly state what properties we
assume about it. The most important instances are monads and it is convenient
to use the facilities of monadic notation in programming and monad theory in
reasoning.

The second observation is that it is not guaranteed in general that the
codata type is well-defined. Haskell will accept the definition when M is
any operator, but mathematically the type is well defined only when Fj; X =
M (A x X) is a functor with a final coalgebra.

Definition 1. For any functor F, a coalgebra for F is pair (A, «) consisting
of a type A and a function a: A — FA.

We say that (A, ) is a final F-coalgebra if, for every coalgebra (X,& : X —
FX), there is a unique coalgebra morphism between the the two coalgebras:
anag : (X, &) = (A, ). Such a morphism is a function between the types that
commutes with the coalgebra functions:

A FA
A
anag ! Fana; ooanag = Fanag o €.
X FX
£

The function is called anag because it is sometimes called the anamorphism for
the coalgebra &.

This definition means that we can define a function into a coinductive type
by giving a coalgebra. For example, consider the data type of a pure stream
of natural numbers: The type S4 is the final coalgebra of the functor F'(X) =
Ax X.

We can define a function into S4 by defining a coalgebra on the domain
type A, which in this case is N. For example, if we want to define a function
that maps any natural number n to the stream of numbers starting from n,
nan+1)<a(n+2)<a(n+3)<---, we can do it by using a coalgebra on N:

¢:N>NxN
En=(n,n+1)



(Note that the target type of the coalgebra is F(N) = N x N: The first N is the
parameter of the functor, while the second N is the carrier of the coalgebra.)
The anamorphism fr = anag : N — Sy maps n to the stream starting at n.

In practical programming, we often let the coalgebra £ be implicit by directly

defining the function anag recursively. For example, the function above can be

defined as:
fr:N— SN

frn=nd<afr(n+1)

Here the presence of the parameter n and the argument of the recursive call
n-+1 implicitly give the coalgebra n — (n,n+1). This is a general programming
pattern: we specify a function by equations that directly give the head of the
resulting stream, and indirectly determine the tail by applying recursively the
function at the top of the second argument of the constructor <. We say that the
recursive call is guarded by the constructor. When this happens we can always
find a coalgebra that justifies the definition.

In practical programming we can use a more liberal methodology, coding
programs by equations that are not strictly guarded by constructors, but can
be reduced to that form (or directly to coalgebra form) by some standard trans-
formation. For example, a different way of defining the function fr is:

fl’/:N—>SN
frn=na(fnol)

where @ is the pointwise addition of streams and 1 is the constant stream of
ones:

(EB):§N—>SN—>SN A= Sy
01 ® o9 = (head 01 + head 09) < (tail o1 @ tail o9) T=2xdZ

Notice that, while the definitions of & and ~ are correctly guarded by construc-
tors, the definition of fr’ is not strictly guarded: the recursive call doesn’t occur
immediately at the top of the second argument of the constructor <, but instead
as an argument of the @ operator. However, it is relatively easy to modify the
definition to make it comply with the strict guardedness condition [3]. We will
allow ourselves to use this more lax definition style.

A class of functors for which the existence of a final coalgebra is guaranteed
is that of containers [[]]: they are a generalization of tree constructors in which
any type can be used for branching; this leads to generalized types of non-well-
founded trees.

Guardedness by constructors is common good criterion for the acceptability
of recursive definitions with a final coalgebra as its codomain: it accepts any
recursive equations in which the right-hand side is a term with a constructor on
top and recursive calls occurring only as direct arguments of that constructor.

See previous survey work [3] for an overview of the theory of final coalgebras,
coinductive types, and corecursive definitions.



The definition of Sys 4 is not meaningful for all Ms, because the final coal-
gebra may not exist or not be unique. A useful result is that a functor has a
final coalgebra if it is a container [1], and Fjs is a container if M is [4]. This
is the case for all the instances that we consider (but there are well known
counterexamples, like the powerset functor and the continuation functor).

The idea of a container functor F' is that, given a type X, the elements
of FF X are built by constructors that specify a shape together with positions
inside the shape where elements of X can be inserted. For example, the functor
Maybe has two shapes: Nothing, with not positions at all, and Just, with a single
position. Another example is the List functor: we can see it as having an infinite
number of shapes: one shape for every natural number n, with n positions:

shapen: [ e, -+, o |
positions: T T

In our case, if M is a container, the functor F); is a container where the
shapes are extended with an element of A paired to every positions. For exam-
ple, if M is List, the general form of shapes and positions is this:

shape n: [ (ao,®), -+, (an—1,¢) |
positions: T T

The coinductive types we use are always final coalgebras of containers. From
now on we silently assume that M is a container and that the final coalgebra
exists. Cofinality means that we can define functions into the coalgebra by core-
cursion and we can prove properties of its elements by coinduction. This means
that we can define a function by equations that recursively apply the function
itself to the elements in the positions of the shapes, and we can prove properties
of elements by invoking the statement we want to prove on the elements in the
positions.

One final observation is about the distinction between inductive and coin-
ductive types. We have defined pure streams, lazy lists, monadic streams as
coinductive types, using the keyword codata. Every container functor also has
an inductive type, defined similarly but with the keyword data. For example,
if we change the keyword in the definition of lazy lists, we obtain the type of
finite lists:

data FList(A) : Set
(<) : A x FList(A) — FList(A)
nil : FList(A).

This change requires every element of FList(A) to be well-founded, that is, to
hit the base case nil after a finite number of steps. Inductive types are much
more well known that the coinductive ones, and have been a staple of computer
science for decades. The field of coinductive types is instead much younger and
still under development.

Inductive types can be characterized dually to coinductive ones as initial
algebras of functors. The pattern of definition of function on them is different:
we use the common inductive recursion style, rather than guardedness.



An inductive type is always a subset of the coinductive type for the same
functor (finite lists are contained in lazy lists), but the coinductive type contains
extra infinite elements.

It is strictly inadmissible to confuse inductive and coinductive types: they
have different and inconsistent ways of defining functions and of reasoning about
them (see the next section on coinduction). However, Haskell doesn’t distinguish
between the two: it has no codata keyword and the data definitions define types
with potentially infinite elements. So data in Haskell really means codata. How-
ever, Haskell allows us to define functions on this types by inductive recursion
(or by using folds), which would strictly be allowed only for well-founded data.

This liberality works well for programming, but may create inconsistencies
when we want to prove properties of our programs. Monsters are defined in
Haskell as:

data MonStr m a = MCons (m (a , MonStr m a))

We will treat this as a coinductive definition and only define functions on them
using the guardedness-by-constructors paradigm.

3 The Coinduction Principle

Inductive types comply with an induction principle, which states that we can
prove statements about them by bottom-up recursion on their structure. Dually,
coinductive types comply with a coinduction principle, which states that we can
prove equalities of their elements by top-down co-recursion on their structure.

Let us illustrate the idea with the example of pure streams: Suppose that
we want to prove that two streams oy and o; are equal. Since streams are
infinite sequences of elements, that will require proving equality of their entries
in corresponding positions: if g = ag<ai;<az<--- and g1 = by<by b2 <-- -, we
must prove ag = bp, a1 = b1, as = by, and so on (we assume equality on streams
is extensional). This requires an infinite sequence of equalities to prove, and
clearly we cannot produce all of these explicitly. However, the proof of equality
can be seen itself as a stream of proofs of equalities of each pair of elements
in the same positions. We can use the same principle of guarded recursion to
generate all the proofs: we recursively assume that we can prove the equality of
the tail streams and we only need to give explicitly the equality of the heads.

More specifically, we often need to prove that two functions produce equal
streams. Suppose f,g : X — S4 are the two functions, and they are both
defined by guarded recursion (that is, defined by coalgebras):

fa=hp(@)af(ty(@) gz =he(x)<f(ty(z))

So f is defined by the coalgebra (hs,t5) : X — A x X and g is defined by the
coalgebra (hg,ty) : X — A x X. We want to prove that the two functions are
extensionally equal; let us give a name to the proof of that statement:

H:Ve: X, fe=gz




To prove this statement we can: first, show directly that the heads must be
equal, py : hf(x) = hy(x); then invoke the coinduction hypothesis H for the
tails. However, since the recursive calls are applied to potentially different
elements of X (t7(z) and t4(x)), we can’t apply H directly.

We can get around this problem by generalizing our goal: instead of proving
that the functions give the same result when applied to the same input, we aim
for the stronger statement that they give the same result when applied to inputs
related by a certain binary relation ~:

H:Vzy: Xje~y— fx=gy.

If ~ is reflexive, this will imply our original goal.

Two other properties are necessary to make things work. First, we need the
equality of the heads of the output: if z ~ y, then hy(z) = hy(y). Second, we
need that ~ is preseved under taking the tail functions for f and g: if z ~ y, then
t¢(z) ~ ty(y); so that we can now apply H to obtain that f(ts(x)) = g(t4(v)).

A relation ~ satisfying these two properties is called a bisimulation between
the coalgebras (hyf,t¢) and (hg,t,). The principle of coinduction states that
bisimilar elements generate equal streams.

This notion can be generalized to coalgebras of any functor F'. To formulate
it we need to define the lifting of a relation by the functor F: if ~ is a relation

on a type X, we want to lift it to a relation LonFX. A simple way to do it
is to apply F' to the set-theoretic characterization of the relation: the set of all
pairs that satisfy it, R = {(x,y) | * ~ y}. We can then use the functorial lift of
the projections 7y, w1 : R — X to say that two elements u,w : F' X are related,

U £ w, if there exists an element s : F' R such that FF'mps =u and F 7 s = w.
This can be further generalized by allowing R to be any type: a collection of
receipts that certify that pairs of elements are related. In category theory, this
notion is called a span.

Definition 2. Let A be a type; a span on A is a triple (R,r1,m9) where R is a
type and r1,7r9 are functions R — A. If F is a functor, the lifting of the span
R by F is the span (F R, F'ri, Fry) on F A.

Definition 3. Let (A, «) be a coalgebra. A span (R,r1,r2) is a bisimulation
if there exists a morphism p : R — F'R such that both 1 and ro are coalgebra
morphisms from (R, p) to (A, «a):

T1
R A
p‘ "2 ‘a aory =Friop
Fry aory = Frgop.
FR FA
FTQ

(The diagram here is used only to declare the type of the morphisms: we don’t
assume that it commutes. The only equalities are the ones stated on the right.)
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The idea is that a relation is a bisimulation if, whenever two elements of A
are related by it, then their images through « are related by the lifting. If F' is
a container and you think of « as giving the structure of an element this says: if
two elements are related, then they must have the same shape, with components
in corresponding positions also related. This notion of bisimulation was first in-
troduced by Park [14] and Milner [13] as a way of reasoning about processes.
Similar concepts were developed earlier in other fields and substantial previous
work prepared the background for its appearance. The survey article by San-
giorgi [20] tells the history of the idea. Aczel [2] adopted it as the appropriate
notion of equality for non-well-founded sets. There are subtle differences be-
tween several notions of bisimulation that are not equivalent in full generality:
recent work by Staton [22] investigates their correlations.

On S4 a bisimulation is a binary relation ~ such that:

Vo1,09 : Sp.01 ~ 09 = head o = head o5 A tail o ~ tail o9

Notice that o7 ~ o9 guarantees that corresponding elements in the infinite
sequences defined by o1 and oy are equal, that is, o7 and oy are extension-
ally equal. In fact, by repeatedly applying the above property, we have that
head (tail” o1) = head (tail" 03) for every n.

Definition 4. A coalgebra (A, a) is said to satisfy the coinduction principle if
for every bisimulation (R,r1,r2) we have that r = rq extensionally. That is,
all pairs related by the bisimulation are equal.

Intuitively, the coinduction principle states that the elements of A are com-
pletely characterised by their structure, which can be infinite. There is a well-
known connection between finality of a coalgebra and the coinduction principle.

Theorem 5. Final coalgebras satisfy the coinduction principle.

In practice the coinduction principle is applied by a corecursive proof that
can invoke the statement to be proved under certain structural restrictions.
When proving the equality of two given terms, we can appeal to the statement
that we want to prove, as a coinduction hypothesis, as long as it is guarded by
constructors in the sense that it is only deployed to prove the equality of direct
components of the given terms.

As an example, let us use the coinduction principle to prove that the two
versions of the function fr defined in Section P are equal, that is, frn = fr' n for
all natural numbers n. We will first need a lemma about fr', basically saying
that it satisfies the tail equaltion of fr, which we also prove by coinduction.

Lemma 6. For all natural numbers n, tail (ff' n) = fr' (n 4+ 1).

Proof. We unfold the two sides of the equality, simplifying according to the

11



definitions of fr’, @, and 1:

tail (' 1) = tail (n < (' n & 1))
=f'nol
= (head (fr' n) + 1) < (tail (fr' n) ® 1)
=(n+1)<(tail(frn)®1)
fr(n+1)=mn+1)<(fr(n+1)®1)

The two expressions have the same head, n 4+ 1, so we just need to prove that
the tails are equal. For this we can simply invoke the coinductive hypothesis,
that is, apply the statement of the lemma tail (fr' n) = fr’ (n + 1). O

To readers unfamiliar with this style of reasoning, this proof may seem hope-
lessly circular: we invoke the statement that we’re trying to prove in its own
proof. However, the circular appeal to the statement is restricted to proving
equality of the tails: it is guarded by constructors. This constraint on the struc-
ture of the proof makes it ameanable to be reformulated more rigorously in the
form of a bisimulation. (Strictly speaking, the coinductive hypothesis is applied
to terms that are arguments of @, so it is not technically guarded; but as in the
case of the definition of fr’; this lax use can be readily justified.)

We can now use the lemma to prove that both versions of the function are
equal.

Theorem 7. For all natural numbers n, frn = fr' n.

Proof. We unfold the left-hand side of the equation, then use the coinductive
hypothesis and the previous lemma to reduce it to the right-hand side.

frn=n<fr(n+1)
=n<fr(n+1) by Coinductive Hypothesis
=n<tail (ff n) by Lemma
=fr'n

The last step is justified because n = head (fr' n) by definition and trivially any
stream o is equal to head o < tail 0. O

When working with monadic streams, we can similarly use proof by coin-
duction by invoking as coinductive hypothesis the statement we are proving.
Uses of the coinductive hypothesis are justified if they are applied to the sub-
components of the stream.

We will illustrate this when we prove statements about some of the instan-
tiations of monadic streams. For example, when using List-monsters (monadic
streams where the underlying monad M is List), we are allowed to apply the
coinductive hypothesis to the tails of all elements in the list.

12



4 Examples

We now shift our view to concrete examples of monsters, and their potential
uses.

By instantiating monadic streams with different monads, you can form well-
known data types, or variations of these. This has provided good insight into
what kinds of operations are possible to perform on monadic streams in general.

For each one of these instances, we look at how they correspond to other
related data structures. In the next section, we also investigate how a few generic
functions on monadic streams act on each of these instances, with respect to
how they transform the data structures that these monsters represent.

All of these instances of monadic streams, and some of their related op-
erations, are implemented in the attached library. For the most part we will
consider operations that are polymorphic on the monad, as these are more novel
in their behaviour.

4.1 Identity monad

To recap, when instantiating Sy 4 with the identity monad, we obtain the type
of pure streams.
codata S, : Set
(<1) :N— SN — SN

All standard operations on streams can be implemented for this type.

Interestingly, pure streams are also comonads, and this is true in general
for any monadic stream where the underlying functor has a comonad structure.
This is discussed at the end of this section, where we look at the example of a
Store-monster.

4.2 Maybe monad
When the underlying functor is Maybe, we get the type of lazy lists

codata List(A) : Set
(<) : A x List(A) — List(A)
nil : List(A)

In Haskell, this type is implemented as the standard list type [a] for any
type a. The nil constructor is just the empty list [1, and the < constructor is
represented by the operator (:). So the list ag <ay <ag <nil is written in Haskell
as either a0:a1:a2:[] or, with the nicer list notation, as [a0,al,a2].

The type Smaybe,4 0f Maybe-monsters is isomorphic to the type List(A) of
lazy lists, with every operation possible on lists also possible on Maybe-monsters.
And indeed most operations can be generalized to polymorphic functions inde-
pendent of the monad.

This isomorphism is witnessed by the two functions:
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fromL :: [a] — MonStr Maybe a
fromL [] = Nothing
fromL (x:xs) = MCons (Just (x, fromL xs))

toList :: MonStr Maybe a — [al
toList (MCons Nothing) = []
toList (MCons Just (x, xs)) = x : (toList xs)

It is clear from the definitions that these functions are the exact inverse of
one another.

This isomorphism has provided a useful benchmark against which to test
monad-polymorphic functions in our library. For each function in Data.List
(a collection of list operations included in Haskell’s standard library) that has
been generalized to monadic streams, we can test this generalized function with
a Maybe-monster, and compare the output to that of the corresponding function
in Data.List. For this, we use the QuickCheck [p] library:

prop_drop :: Property
prop_drop = forAll (genListMonStr >+< chooseInt (0,1000)) $
A((Q, ms), n) — drop n 1 — tolList (dropM n ms)

This function builds a QuickCheck property, which validates whether the
drop function (removal of the first n elements) on lists and Maybe-monsters are
(extensionally) equivalent. This makes use of the isomorphism, allowing us to
freely convert between these types in order to check for equality.

Included with the library is a whole suite of tests in this style, showing the
correspondence between functions on Maybe-monsters and functions on lazy lists
defined in the Haskell standard library.

All standard (and many non-standard) operations on lists are implemented
for generic monads, sometimes with the requirement that the functor is an
instance of Foldable or Alternative.

4.3 List monad

When instantiating monsters with the list monad, we get the type of branch-
labelled trees. These are a variation on the usual type of Rose trees, where in
this case the edges, rather than the nodes, of the trees are labelled by values.

codata BLTree(A) : Set
node : List(A x BLTree(A)) — BLTree(A)

(Note that this type has an empty element leaf : BLTree(A), obtained by using
the empty list, leaf = nodenil.)

Branch-labelled trees with one extra ‘root’ element are isomorphic to Rose
trees, as shown below - this corresponds to the idea that every node in a tree
has a unique branch from its parent, with the exception of the root node.
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data RoseTree a — RNode a [RoseTree a]

phi :: (a, MonStr [] a) — RoseTree a
phi (a , MCons ts) = RNode a (fmap phi ts)

psi :: RoseTree a — (a, MonStr [] a)
psi (RNode a ts) = (a , MCons (fmap psi ts))

Branch-labelled trees in general are more useful for applications where you
care only about paths down a tree, or transitions between states rather than the
states themselves.

As an example, we could either model a game of noughts and crosses as a
Rose tree where each node stores a game state, or with a List-monster where
each branch stores the move taken. It is clear from this that you can have an
empty branch-labelled tree (a single node with no branches/moves), but not an
empty Rose tree (there is always an initial game state, even if no move has been
made yet).

Another example is probability trees - the branches represent choices, and
the labels are the probabilities of those choices occurring. This corresponds
nicely to the non-determinism semantics of the list monad. Included in the
attached code are some operations on and examples of List-monsters, with this
concept in mind.

Some standard operations on trees don’t work for this variation, but traversal
operations return the branch labels in the expected order, with the convention
of traversing left-to-right.

4.4 Reader monad

Yet another interesting type is that of Reader-monsters. The reader monad is
simply an operator that generates the function type from a fixed input type I:

Reader; A=1— A

We can see Reader;-monsters, elements of Sreader, A, as trees with edges labelled
by elements of I and internal nodes labelled by elements of A.

Reader-monsters correspond to the type of Mealy machines.

These are a type of finite state transducer, with a set of states .S, input
alphabet X, output alphabet A, an initial state sg € .S, and a transition function
6:59%xX— S xA. They are typically used to model computations where the
outputs depend on both the internal state and an input.

record Mealy(S, %, A) : Set
0:8xEL—=-S5xA
So - S

There are mutual transformations between these two types. These form an
equivalence: when transforming a Mealy machine to a Reader-monad and then
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back to a Mealy machine, we don’t get the same machine (the type of states
has changed), but we get a Mealy machine with the same dynamic behaviour.

The direction from Reader-monsters to Mealy machines requires us to define
the state type as a hierarchical recursive type from input to output.

type SMStr i o = MonStr ((—) i) o

data Mealy st inA outA = Mealy { initState :: st
, transf :: (st , inA) — (st , outA)
}

data StateFunc i o = SF { getSF :: i — (StateFunc i o, o) }

mealyToMonStr :: Mealy s i o — SMStr i o
mealyToMonStr (Mealy s tf) = MCons (\e — let (s', a) =tf (s, e)
in (a, mealyToMonStr (Mealy s' tf)))

monStrToMealy :: SMStr i o — Mealy (StateFunc i o) i o
monStrToMealy (MCons f) = Mealy (aux f) (A(g, e) — (getSF g) e)
where
aux :: (e — (a, MonStr ((—) e) a)) — StateFunc e a
aux f = SF (de — let (a, g) =f e in (aux (uncons g), a))

To clarify, StateFunc is equivalent to SMStr - the distinction is that we
use StateFunc when we want to talk in context about the state of the Mealy
machine that a SMStr corresponds to, and not just a Reader-monster in isolation.

The two functions defined produce extensionally equivalent Mealy machines,
which when given the same inputs, produce the same outputs. A Reader-monster
can be thought of as a Mealy machine where each state is the transition func-
tion, more specifically the transition functions partially applied to each state
of the implied Mealy machine. From now on we talk about Reader-monsters,
finite state machines (FSM) and Mealy machines, all referring to the same data
structure.

Interestingly, from Jacobs [9], the type of Mealy machines is a way of defining
a coalgebra: the corresponding monster is then the behaviour of this coalgebra.
See the coinductive treatment of finite state machines in [§]. This particular
work could be very relevant in our continued study on monadic streams and
their connection to automata.

One function that works well with Reader-monsters is zipWithA. This uses
a binary operation to combine the elements of two monsters, producing a new
monster with these combined elements. In the case of state machines, this
amounts to having a pair of state machines where the same inputs are fed to
both, and then the outputs are combined with some arbitrary function. Each
FSM still changes state independently.

As a trivial example, you could have a FSM that outputs the maximum
of the last 3 inputs (where the set of inputs is ordered), and another that

16




outputs the minimum. If you zip these together with a function that checks
for equality, then you have a FSM that outputs 'true’ when the last 3 inputs
were identical, and ’false’ otherwise. This particular example is included in
Examples.StateMachines.

This function, and others such as interleaveReadM (discussed in section 5),
give useful ways of building complex FSMs out of smaller ones.

Another type that Reader-monsters correspond to, when the domain of the
reader arrows are pairs of time values and another input type, is the type of
signal functions as presented in [[L5]. Perez et al. discuss this correspondence,
and in-fact show that monadic streams in general can play a useful role in
Functional Reactive Programming (FRP), by modelling streams of inputs into
reactive systems. This role, and other applications, are discussed further in
section 7.

4.5 State monad

Instantiation of monsters with the state monad gives a type that is similar
again to that of Mealy machines, but one that supplies its own input to each
computation (after the first) - you can either ‘restart’ the machine by supplying
a fresh state, or let it run with the states that it produces itself. This could be
seen as a Mealy machine with feedback, one who’s transition function returns a
new input. We refer to this as a feedback machine (FBMachine for short):

record FBMachine(S, X, A) : Set
J:SxE—=89%x(ExA)
sp: S

We represent the data type this way to underline that the type of our ’feed-
back machines’ FBMachine(S, 3, A) is equivalent to Mealy(S, X, ¥ x A), that of
a special case of Reader-monsters.

In this sense, most of what can be said about State-monsters was said in
the Reader monad section above. The main difference is in how the stream
is traversed, or executed - the state monad’s join operation threads the state
though each nested computation, whereas a Reader-monster can’t do this with
the reader monad operations alone.

Another way to think about a State-monster, separate from their inter-
pretation as Mealy machines, is as an intensional unfold of a pure stream of
values. Defining a State-monster amounts to defining a function that takes a
state, and returns a value, a new state, and a continuation function (another
State-monster). When the new state is continuously applied to the next con-
tinuation, this calculates an infinite stream of values from an initial ’seed’ state
- quite similar to the unfold function, also called the stream co-iterator.

data FBMachine s a = FBM { runFBM :: s — ((a, s), FBMachine s a) }
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unfoldFBM :: FBMachine s a — s — Stream a
unfoldFBM fbm sO = h <: (unfoldFBM cont s1)
where ((h, s1), cont) = runFBM fbm s0

unfold :: (s — (a, s)) — s — Stream a
unfold f sO =h <: (unfold f s1)
where (h, s1) = f s0

The key difference is that the State-monster can contain many different
functions that produce new states and outputs. This gives a richer language by
which to calculate outputs, where each function defines what the next function
should be, depending on an input state. This makes them analogous to state
machines, where S is the set of functions the monster contains, and ¥ is the
state values given as inputs.

4.6 10 monad

A monadic stream of 10 actions corresponds to a non-terminating process. Due
to the nature of the |0 monad, these operate quite differently to other monsters.

One interesting property is that an lO-monster is the only kind of non-
well founded (infinite) monster, as far as we know, where collapsing the whole
stream into one monadic action is possible and meaningful. This is done using
the runProcess family of functions:

type Process a = MonStr 10 a

runProcess :: Process a — 10 [a]
runProcess (MCons s) = do (a,s') < s
as < runProcess s'

return (a:as)

This is because |0 actions can continuously interact with the outside world,
and call other functions, without having to terminate. The 10 action produced
by collapsing an |O-monster is the (possibly infinite) sequence of all 10 opera-
tions in the stream.

However in this sense, it is better not to 'run’ a process (IO-monster) at all,
and instead just unfold each 10 action one at a time. This allows you pass it
around, taking of layers of computation as needed:

consumeOne :: Show a = Process a — Process a

consumeOne p = absorbM $ do (a, cont) ¢ uncons p
putStrLn (show a)
return cont

This intensional representation of processes gives an advantage over just
defining a single repeating action with just the IO monad, because you can take
intermediate results from an infinite process as needed, whereas you cannot
define a single 10 action that does this without using lazy 10.
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consumeOne' :: Show a = 10 [a] — 10 [a]

consumeOne' p = join $ do a < fmap head p
putStrLn (show a)
return (fmap tail p)

The first line of the do statement won’t return if the 10 action p is non-
terminating and strict.

The following is a technical worked example, presenting alternative ways of
running an |0-monster in different contexts:

Given a process (an |0-monster), you may want to use some of the output
values in another computation. To access these values, you need to run the
10 actions that the monster consists of. However, since the first action will
never return (as all of the subsequent actions are nested inside), this is not
immediately possible with strict 10. Instead, you have to use lazy 10, so that
values that are needed outside of the process are only calculated as required.
This requires unsafeInterleaveIO [21], which defers execution of 10 actions
until evaluation of their result is forced by another computation.

In these functions, we are trying to output the first value computed by
running a process procO:

procO :: Process a

run0 :: 10 O
run0 = do as < runProcess procO
putStrLn $ show (as !! 0)

runl :: 10 O
runl = do as < unsafeRunProcess procO
putStrLn $ show (as !! 0)

Here, run0O will run the process proc0O, and the line that prints the first
element will never be reached since runProcess procO doesn’t terminate.
In runi, we use unsafeRunProcess, which is defined as:

unsafeRunProcess :: Process a — 10 [al
unsafeRunProcess (MCons s) =
do (a,s') < s
as < unsafeInterleavelI0 (unsafeRunProcess s')
return (a:as)

Each of the 10 actions in the process are run with unsafeInterleavel0,
allowing the process to return ‘early’, and the putStrLn $ show (as !! 0)
statement to be reached. This print statement forces the first 10 action in the
process to run, since the first element of as is needed (as !! 0 returns the first
element of the accumulated values from running the process).

Using unsafeInterleavelI0 introduces concurrency problems into otherwise
relatively pure Haskell programs. For some |0-monsters, such as those that sim-
ply output values to the terminal, this is not a big issue, but more complicated
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ones may cause problems (for example ones that read and write to a file).

This problem informed the development of a more general operation on
monadic streams, interleaveReadM, which allows for interleaving two monsters,
where each element in the second depends on elements in the first.

interleaveReadM :: Monad m = MonStr m a — MonStr (ReaderT a m) b
— MonStr m b
interleaveReadM (MCons ma) (MCons f) — MCons $
do (a, ma') <+ ma
(b, £f') < runReaderT f a
return (b, interleaveReadM ma' f')

This is useful for sequencing 10-monsters, without resorting to possibly un-
safe methods. It relies on the ReaderT monad transformer, monad transformers
being something we haven’t yet discussed. They are essentially a method of
stacking different monads to combine their effects. Here, we are using the
ReaderT a I0 monad, which represents an 10 action that is computed from

some environment of type a.
Shown below is an example of combining two processes with this operation.

inputProc :: Process Char
inputProc = MCons $ do c < getChar
return (c, inputProc)

outputProc :: Show a = MonStr (ReaderT a 10) ()

outputProc = MCons $ do a < ask
1iftI0 $ putStrLn (show a)
return ((), outputProc)

testProc :: 10 O
testProc = runVoidProcess (interleaveReadM inputProc outputProc)

Using this function lets you define dependent processes separately and then
combine them afterwards. ‘Dependent’ refers to the use of the ReaderT monad
transformer: the actions of the dependent process (outputProc) are specified
by the elements in another process (inputProc).

Variations on this function give lots of options for modifying processes. For
example, we could write a version of runl from earlier using insertActReadV,
which inserts a dependent monadic action at a given index.

runl :: 10 [Int]
runl = runProcess (insertActReadM O (putStrLn oshow) proc0)

This won’t terminate, but prints the first element of the |0-monster like we

wanted, by inserting the print function directly into the process.
To stop this process (without resorting to unsafeInterleaveI0), we define
a variation of runProcess which stops unfolding the |O-monster when a given

predicate is true:
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stopAtPred :: (a — Bool) — Process a — 10 a
stopAtPred p (MCons s) =do (a, s') < s
if p athen (return a) else (stopAtPred p s')

As a side-note, runProcess can now be written as:

runProcess :: Process a — 10 a
runProcess = stopAtPred (A_ — False)

With this, it is now possible to terminate the process given a particular
predicate. It is also possible to terminate a process at a particular index in
the 10-monster, thus giving exactly the behaviour we wanted for runl, without
resorting to unsafe 10 (this example is included in the attached code, as it is a
bit more verbose).

As demonstrated, |O-monsters are tricky, but provide an interesting inten-
sional way of modelling processes, allowing the computations that they consist
of to be modified and interleaved after their definition.

4.7 Store comonad

The store comonad (see section 6.3 for the definition of a comonad) is a pair of
a state (called the store) and a function to extract a value from that state:

data Store s a = Store (s — a) s

A Store-monster, a monadic stream using the store comonad, is a stream
where extracting from the store gives a value, and a new store. This encapsulates
the idea of an environment that can be used to modify itself.

(We again stress that, contrary to the name, the underlying functor in a
monadic stream doesn’t have to be a monad, and can in-fact be other types of
functor, in this case a comonad)

The concept of cellular automata [[11] fits this type of monadic stream per-
fectly, where the state of the environment is calculated from the previous using
a rule.

The comonadic interpretation of cellular automata [[19] is a good introduction
to the motivation behind and uses of comonads. The difference when using
monadic streams is that a Store-monster already ‘contains’ every future state
of its environment, so extra functions can be applied lazily to these before they
are actually evaluated. By representing the structure intensionally rather than
extensionally, you gain an extra level of control.

To show this, there is an implementation of Conway’s game of life in-
cluded in the attached code. This demo uses a kind of Zipper comonad [§]
instead of store for some more efficiency, but the type used is isomorphic to
Store (Int,Int) Bool.
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5 General functions and operations
In light of the interpretations of various types of monadic stream, some of the
general operations defined have interesting uses in all or some of the contexts

presented.

Consider the dropM function.

dropM :: Monad m = Int — MonStr m a — MonStr m a
dropM n ms
| n=0 =ms
| n>0 =dropM (n - 1) (tailM ms)
| otherwise = error "MonadicStreams.dropM: negative argument.”

This drops the first n elements of a monster. Doing so requires the joining
of the first n monadic actions, which in the case of State-monsters for example
will keep the first n state modifications. The monadic tail function tailM au-
tomatically joins the first monadic action into the rest of the monster. This is
equivalent to ignoring the output of the feedback machine for its first n feed-
backs, so this operation could be seen as moving forwards in time n steps.

This ‘moving forwards’ interpretation is similar in every kind of monadic
stream - in a List-monster, you get the list of choices after n previous choices
were made. In an 10-monster you get the output after the first n computations.
In a Reader-monster (state machine) you get the output and next state after
giving the same input n times. In a Maybe-monster (lazy list), you drop the
first n items from the list.

Another interesting function is scanM.

scanA :: Applicative m = (a -+ b — a) — a — MonStr m b — MonStr m a
scanA f z s =z <: scanH f z s
where scanH f z s = MCons $ (\(a, s') —
(f za, scanH f (f z a) s')) <$> uncons s

scanM :: Monad m = (a —+ a — a) — MonStr m a — MonStr m a
scanM f s = absorbM $ (A\(a, s') — scanA f a s') <$> uncons s

It combines each pair of elements in the stream together with a given func-
tion, resulting in a stream of the intermediate values. scanA also does this, but
leaves an extra monadic action at the beginning of the stream, which scanM
joins with the next action in the monster to remove it. scanA can also generate
a monster with a different type to the input, which can be seen from the defini-
tions: this is useful when you want to scan using a function who’s return type
differs from that of its arguments.

In the context of List-monads used as probability trees, scanM (*) will (when
applied to a tree), return the tree of sequential probabilities. That is, given two
consecutive branches of the tree I; and Il (which represent probabilities), this
scan instance calculates 1 * o, the probability of traversing the first branch and
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then the second. The scan carries this result forward, so over three sequential
branches [, I and I3, the function would produce the probability I * o % I3 at
the third branch in the new tree.

In the same way, scanM (+) calculates the disjoint unions of probabilities
across each combination of branches in the tree.

A final interesting function is interleave. This (unsurprisingly) lets you
interleave the actions of two monadic streams.

interleave :: Functor m = MonStr m a — MonStr m a — MonStr m a
interleave mas mbs = transform (M t — (h, interleave mbs t)) mas

In the context of List-monsters again, this function lets you interleave choices
- for two List-monsters Lo and Lj, representing decision trees, interleaving them
results in a tree Lo ; where the first decision in Ly ; is the first in Lg, the second
decision is the first in L1, and so on. This can describe situations where different
kinds of choices need to be made cyclically.

In 10-monsters, this function lets you interleave the actions of two process,
effectively implementing a naive kind of user-level multithreading.

In Reader-monsters and State-monsters, a variation of this function,
interleaveReadM is better in the context of state machines (this function is
discussed in the 10 monad portion of section 4). Here, this function lets you
combine two state machines such that the state and outputs of one depend on
the outputs of the other.

interleaveReadM :: Monad m = MonStr m a — MonStr (ReaderT a m) b
— MonStr m b
interleaveReadM (MCons ma) (MCons f) =
MCons $ do (a, ma') < ma
(b, f') < runReaderT f a
return (b, interleaveReadM ma' f')

This could be extended so that both monsters are dependent on each other,
which is left as an exercise to the reader.

The main aim of this library was to define general functions that operate
on generic data structures (defined using monadic streams), such that the func-
tions have interesting, or even novel, uses in the contexts presented by different
monads or functors. We hope that the functions presented above, alongside the
example in section 4, give readers a general sense of this.
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6 Instances of Functor, Applicative, Comonad

This section outlines the Functor, Applicative, and Comonad instances, proving
that the functions defined on monadic streams to implement these satisfy the
relevant laws. We will prove these with a mixture of equational reasoning (using
Haskell), and categorical reasoning, in each case making particular assumptions
about the underlying functor.

6.1 Functor Instance

To show that Sy, is a functor whenever M is, we have to define its behaviour
on morphisms: if f : A — B, then we must define how f maps on monadic
streams:

Sam f:Sma — Su.B

Sar f (mconsm) = mcons (M (f X Sps f)m)

This definition complies with the guarded-by-constructors discipline: the re-
cursive call to (Sps f) is mapped to the recursive substreams by the functorial
application of the functor M (Ax —). That is: (Sys f) will be recursively applied
only at the recursive positions inside the shape of m. There are also applica-
tions of f to the first element (of type A) of the pairs in the M-position: this is
non-recursive, and therefore not problematic.

The Haskell version of the functorial mapping uses a general stream trans-
former at the top level: transformM maps between MonStr m a and MonStr m b by
mapping through m a function on the components:

uncons :: MonStr m a — m (a, MonStr m a)
uncons (MCons m) = m

transformM :: Functor m = (a — MonStr m a — (b, MonStr m b)) —
MonStr m a — MonStr m b
transformM f s = MCons $ fmap (A(h,t) — f h t) (uncons s)

instance Functor m = Functor (MonStr m) where
— fmap :: (a — b) — MonStrm a — MonStr m b
fmap f = transformM (\a s — (f a, fmap f s))

We can now prove that the functor laws are satisfied by Sy;: it’s functorial
mapping preserves identities and composition. The proofs are straightforward
applications of definitions and the functoriality of M and x, except for the use of
coinduction; we are allowed to invoke the laws themselves in their proofs, as long
as we use them only in the direct recursive subterms of the mcons constructor,
that is, in the positions for the container M (A x —).

Lemma 8. The identity functor law holds for monadic streams:

Sarida = ids,, ,
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Proof. We apply the left-hand side function to an M-monster in constructor
form:

Sasida (mconsm)
= mcons (M (idg x Sprida)m) by definition
= mcons (M (id4 x ids,, ,)m) by coinduction hypothesis

= mcons (M (idaxs,, 4) ™M) by functoriality of x
= mcons (idas (Axsy 1) M) by functoriality of M
= mconsm

Lemma 9. The composition functor law holds for monadic streams:
If f:A— Bandg: B — C, then

Sm(gof)=(Smg)o(Suf)

Proof. Let’s again apply the left-hand side function to an M-monster in con-
structor form:

Sum (g o f) (mconsm)

=mcons (M ((go f) x Sar (go f))m) by definition of Sy; mapping
=mcons (M ((go f) x ((Sarg) o (Sar f)))m) by coinduction hypothesis

= mcons (M ((g x Sprg) o (f X Sar f))m) by functoriality of x
=mcons (M (g x Sprg) o M (f x Spr f))m) by functoriality of M

= mcons (M (g X Sprg) (M (f X Spar f)m)) by definition of composition

= Sy g (mcons (M (f x Spr f)m)) by definition of Sy; mapping

= Spr 9 (Sar f (mconsm)) by definition of Sy; mapping

= ((Sar g) o (Sas f)) (mconsm) by definition of composition
O

We can sum up these results by stating that the monster operator is a functor
if the underlying ‘monad’ is (remember that we are not actually assuming that
M is a monad yet, but just a type operator).

Theorem 10. If M is a functor, Sy; is also a functor.

6.2 Applicative instance

Applicative functors [12] extend the mapping operation by allowing function
sequencing under the functor. The Applicative class has two methods: pure,
that injects single values into the functor, and ®, that applies functions under
the functor.

We assume that the type operator M is an applicative functor, that is, it

has methods:
pure: A—- MA

(®):M(A—-B)—>MA— MB

satisfying the applicative laws.
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A typical use of applicative functors is to apply a function of many arguments
to several applicative values. If g : Ag - A1 — -+ = A, — B and my :
MAg,my : MA,...,m,: MA, , then:

(pureg) ® mo®m; ® --- ®m,, : M B

In particular, if ¢ is an infix binary operator (@) : A — B — C, then we use

the notation:
ma & mp = (pure (B)) @ mg ® myp

We will show that S,; is also applicative. In order to define the methods, we
need some auxiliary functions on applicative monsters. First of all, a simplified
version of mcons that appends a single value in front of a monster. This in turn
uses a similar operator for functors, which appends an M-action to the front of
a monster

(<) : MA—-SyA— Sy A
m<:: o = mcons (M (Aa.(a,0))m)

(4:) cA—>SyA—Sy A
a<:0 = (purea)<d:: o

In Haskell:

(<::) :: Functor m = m a — MonStr m a — MonStr m a
ma <:: s = MCons (fmap (\a — (a,s)) ma)

(<:) :: Applicative m = a — MonStr m a — MonStr m a
a<: s=pure a<:: s

The pure method for monsters then consists in repeating the same element

forever:
pure: A — Sy A

purea = a<: purea

We define the function application method by mapping straight function
application on the heads and recursive calls on the tails through functorial and
applicative lifting:

(mconsm ) ® (mconsm,) = mcons (m s ® m,)

where (f,¢) ® (a,0) = (fa,¢ ® o)

This definition recursively applies ® indirectly in the second components
of the arguments of the ® operator. This is lifted to ®, which distributes
down through the components of the applicative values my and mg, and fi-
nally guarded by the constructor mcons. This guarantees the soundness of the
definition according to the guardedness by constructors criterion.

Here is the definition of the Applicative instance for monsters in Haskell:
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transformA :: Applicative m =
(a — MonStr m a —+ b — MonStr m b — (c, MonStr m ¢c)) —
MonStr m a — MonStr m b — MonStr m ¢
transformA f as bs = MCons $ (A\(a,as') (b,bs') — f a as' b bs')
<$> uncons as <*> uncons bs

instance Applicative m = Applicative (MonStr m) where
pure a = a <: pure a
(<#>) = transformA (\f fs a as — (f a, fs <x> as))

An applicative instance must satisfy four general laws regulating the inter-
action of sequencing and pure values and requiring associativity of application.
Preliminary investigation and analysis of specific instances suggest that this is
the case for monsters. A full proof is one of the goals of future work.

Conjecture 11. If M is an applicative functor, Sy; is also an applicative
functor. That is, the following laws are satisfied, for every a : A, f : A — B,
00:SuA, 07 : Sy (A— B), 05:Sm (B—C):

(pureid) ® 0, = 0,

pure (f a) = (pure f) ® (pure.a)

o5 ® (purea) = (pure (\f.f 0)) ® o
0y ® (07 ®0,) = (04007) ® 0,

6.3 Comonad instance in Haskell

Comonads (in cojoin form) are functors with two additional operations: n that
extracts an element from the functor, and p, that ‘duplicates’ a functor:

n:WA— A
w:WA—-W(WA)

For this to constitute a comonad, these operations need to satisfy the comonad
laws.

These operations are expressed in Haskell with the extract and duplicate
functions of the Comonad type class:

class Functor w = Comonad w where
extract :: wa — a
duplicate :: w a — w (w a)

We believe that monadic streams are comonads, when the underlying functor
is a comonad.

In the following Haskell equations, the function head returns the first element
of the first pair in the monster, wrapped in the underlying functor. We require
the underlying functor to be a comonad, so that we can use extract to remove
the functor wrapping.

The proposed Comonad instance for monadic streams is as follows.
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head :: Functor m = MonStr ma — m a
head = fmap fst ouncons

instance Comonad w = Comonad (MonStr w) where
— extract :: wa — a
extract = extract o head
— duplicate :: MonStr w a — MonStr w (MonStr w a)
duplicate ms = MCons $ fmap (A(h,t) — (ms, duplicate t)) (uncons ms)

The duplicate function for monadic streams forms a "monster matrix”.
This is a monadic stream where each element is a monadic stream. In the follow-
ing proof sketches, we represent this as mm(ms) where mm(ms) = duplicate ms.

Intuitively, mm (ms) is a monster where the first element is ms, the second is
the tail of ms, the third is the tail of the tail of ms, and so on.

6.3.1 Comonad law proof sketches

Sketch of proof that extract . duplicate == id

extract o duplicate

= dms — extract (MCons $ fmap (A(h,t) — (ms, duplicate t))
(uncons ms))

= dms — extract (head (MCons $ fmap (A(h,t) — (ms, duplicate t))
(uncons ms)))

= ms — ms

=id

Sketch of proof that fmap extract . duplicate == id

fmap extract oduplicate = dms — fmap extract (MCons $ fmap (A(h,t) —
(ms, duplicate t)) (uncons ms))

= dms — transformM (\a s — (extract a, fmap extract s)) (MCons $
fmap (A(h,t) — (ms, duplicate t)) (uncons ms))
[transformM definition]

= Xms — MCons $ fmap (A(h,t) — (extract h, fmap extract t))
(fmap (A(h,t) — (ms, duplicate t)) (uncons ms))

= dms — MCons $ fmap (A(h,t) — (extract ms, fmap extract (duplicate t)))
(uncons ms)
[coinductive hypothesis]

= dms — MCons $ fmap (A(h,t) — ((extractohead) ms, id t)) (uncons ms)
[(extract ohead) ms = a, first element of ms]

= dms — MCons $ fmap (A(h,t) — (a, id t)) (uncons ms)

[a is defined as the first element of ms, so h = a under the fmap]

Ams — ms

id

Sketch of proof that duplicate . duplicate == fmap duplicate . dupli

duplicate o duplicate = Ams — duplicate (duplicate ms)
= Xms — MCons $ fmap (A(h,t) — (duplicate ms, duplicate t)) $

cate
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(fmap (A(h,t) — (ms, duplicate t)) (uncons ms))
= Xms — MCons $ fmap ((A(h,t) — (duplicate ms, duplicate (duplicate t)))
(uncons ms)

fmap duplicate o duplicate = dms — fmap duplicate (MCons $ fmap (A(h,t) —
(ms, duplicate t)) (uncons ms))

= dms — transformM (\a s — (duplicate a, fmap duplicate s)) $
(MCons $ fmap (A(h,t) — (ms, duplicate t)) (uncons ms))

= dms — MCons $ fmap (A(h,t) — (la s —
(duplicate a, fmap duplicate s)) h t) (uncons (MCons $ fmap (A(h,t) —
(ms, duplicate t)) (uncons ms)))

= dms — MCons $ fmap (A(h,t) — (duplicate h, fmap duplicate t)) $
(fmap (A(h,t) — (ms, duplicate t)) (uncons ms))

= Xms — MCons $ fmap (A(h,t) —
(duplicate ms, fmap duplicate (duplicate t))) (uncons ms)
[coinductive hypothesis]

= Xms — MCons $ fmap ((\(h,t) —
(duplicate ms, duplicate (duplicate t))) (uncons ms)

— duplicate o duplicate

As with the applicative functor laws, we are looking to improve these proofs,
and also to formulate them in more categorical terms.

6.4 Monad Counter-examples

It’s natural to ask, given the chosen name for this data structure, whether mon-
sters themselves are monads, at least when the underlying functor is a monad.
This is also a natural question because pure streams (with no extra functor
guarding the elements) are monads. However, this turns out not to be the case
in general (we strongly believe), and we suspect that more constraints need to be
placed on the underlying monad for the monster itself to be a monad. Namely,
we believe the underlying monad should be idempotent.

A monad (in join form) is a functor with two additional operations: return
that trivially injects an element into the functor, and join that flattens a doubly
nested monadic functor into a single layer:

return: A — M A
jom: M(MA)—MA

For this to constitute a monad, these operations need to satisfy the monad
laws (we introduce these as needed). In Haskell, a monad can be defined with
the Monad type class:

class Functor m = Monad m where
return :: a - m a
6> ::ma— (a—>ma) > ma
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For monadic streams to be a monad, we have to be able to inject a pure
value into a monster. This is done using return. It is clear that the only
possible implementation of return for monadic streams is the same as that of
pure in the applicative functor definition from earlier.

return :: Monad m = a — MonStr m a
return a = MCons $ fmap (\a — (a, return a) (return a))

We also need to be able to "flatten’ a monster of monsters into a single mon-
ster, with respect to certain laws - this is done in Haskell using a function >>=,
pronounced ‘bind’, its type defined above. This flattening is done explicitly in
the function join :: MonStr m (MonStr m a) — MonStr m a: it is always the case
that (ma>>=£) = join (fmap f ma) in Haskell. This identity lets us prove proper-
ties of bind by proving properties of join, and visa-versa, as join ma = ma >>=id.

In these following counter-examples, we are looking to show that three naive
ways of defining the join operation do not work. These cases may or may not
cover all possibilities - this is something we have yet to prove.

We will omit the type signature for join in the examples: it is given in
the previous paragraph. We also refer to the monsters which are elements of a
monster of monsters, as inner monsters.

6.4.1 Casel

In this case, we look at the definition of join as taking the ’horizontal’ - the
first element of each inner stream:

join (MCons mma) = MCons $ do (mas, mma') < mma
fmap (\a — (a, join mma')) (head mas)

However, this definition of join violates the left identity monad law, which
states that the following equality must hold:

a::a
f :: a — MonStr m a
return a>>=f — f a

A witness to this is the monadic stream:

fromStep :: Int — MonStr (State Int) Int
fromStep n = MCons (state (\x — ((x, fromStep (ntl)), xtn)))

This State-monster, when run (see section 4.4 and 4.5) with an initial number
n, generates the stream of integers where the first two differ by n, the next two
differ by n 4+ 1, and so on.

Running fromStep 1 with 1 produces the stream:

runFBStr (fromStep 1) 1 =1<: 2<: 4 <: 7 <: 11 <

Running return 1>>=fromStep with 1 produces the stream:
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runFBStr (return 1>>=fromStep) 1 =1<: 2<: 3<: 4<: 5 <:

These are different, so this join instance doesn’t satisfy the left identity
monad law.

Intuitively, we cannot take just the head of each stream, because the first
action in each inner monster is ‘adding 1’ - we end up with a stream where 1 is
added to the the previous element to get the next, which wasn’t the definition
of fromStep 1.

6.4.2 Case 2

The next possible definition takes the ‘vertical’ - just the first inner monster:

absorbM :: Monad m = m (MonStr m a) — MonStr m a
absorbM = MCons o join o fmap uncons

join = absorbM o head

The function absorbM is defined in the library, and simply absorbs a monadic
action from outside of a monadic stream. The join function used to define
absorbM is that of the underlying monad.

This definition violates the right identity monad law, which states:

ma :: MonStr m a
ma >>=return — ma

A witness to this is the pure stream from n, defined as

from :: Monad m = Int — MonStr m a
from n = n <: from (nHl)

from O gives the stream of natural numbers.

from0=0<: 1< 2<: 3<t 4<:

from 0 >>= return using this definition of join (taking the first inner mon-
ster) gives us a stream of constant zeros:

from 0>>=return =0 <: 0 <: 0 <:

Clearly the join operation cannot be defined as taking the first element of
the monster, or the ‘vertical’, since return 0 #* from 0.

6.4.3 Case 3

The final case we consider is taking the ‘diagonal’. We define this taking the
first element of the first inner monster, the second element of the second inner
monster, and so on.

This is defined in Haskell as follows:
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tailM :: MonStr m a — MonStr m a
tailM = absorbM o tail

join (MCons mma) = MCons $ do (mas, mma') < mma
let (ma, ts) = (head mas, fmap tailM mma')
in fmap (A\a — (a, join ts)) ma

Similarly to case 1, this definition does not satisfy the left identity monad
law, to reiterate:

a ! a
f :: a — MonStr m a
return a>>=f — f a

The monster fromStep n is a witness to this.
Running fromStep 1 with 1 produces the stream:

runFBStr (fromStep 1) 1 =1<: 2 <t 4<: 7<: 11 <:

Running return 1>>=fromStep with 1 produces the stream:

runFBStr (return 1>>=fromStep) 1 =1 <: 3 <: 8 <: 17 <: 31 <¢

The problem seems to be when taking the diagonal, that when we take the
nth element from the nth inner stream, we need to join together all of the n
monadic actions in the inner stream up to that element. This generates different
behaviour because the sequencing of the first n actions in a monster is not in
general the same as the nth action by itself.

One solution to this could be to only allow the underlying monad to be
idempotent [6]. This is a monad that ‘squares to itself’ - the join operation is
a natural isomorphism. This isn’t the case for this particular instance of the
state monad, for example: sequencing two ‘add 3’ actions results extensionally
in an ‘add 6’ action.

Taking the diagonal should work as a join operation for monadic streams
with idempotent monads, since any order in which you join the actions results
in the same action. However, this is quite a strong constraint, and it would be
better if there exists a weaker one.

All of these cases and code testing the left and right identity monad laws are
included in the Test.MonadCounterExamples module, which can be used to validate
the reasoning presented.

These three cases may not be exhaustive, so this section exists as an initial
sketch (to be completed at a later date) of why monadic streams are not monads
(when the underlying functor is a monad). However, we can say for sure that
the join operation is not one of the cases considered, which will certainly inform
the direction of a concrete proof.

We also seek to prove that if the monad is idempotent, then the correspond-
ing monadic stream is itself a monad.
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7 Related work and applications

The general application of this library is hinted at in the examples section: data
structures that can be represented as monadic streams (with the underlying
functor being a monad) give meaningful semantics to the general operations we
have developed.

Perhaps the most interesting correspondence is that of Reader-monsters and
finite state transducers. In this context, the functions in our library provide a
set of useful combinators to work with and define state machines. A few of these
have been mentioned in sections 4 and 5, and some more uses are demonstrated
in the attached example code.

7.1 FRP application

One further application of monadic streams is that they can be seen as a gener-
alised form of Yampa’s [[f] signal functions. This is expanded on by Perez et al.
n [15]. For example, you can implement an integral signal function using the
Reader monad. We use the same names as for the same constructs in Yampa,
to make the correspondence clear:

type DTime = Double

type SignalFunc a b = MonStr ((—) (DTime, a)) b

integral :: SignalFunc Double Double
integral = MCons integralAuxF

integralAuxF :: (DTime, Double) — (Double, SignalFunc DTime Double)
integralAuxF (_, a) = (0 , integralAux 0 a)
where integralAux igrl a_prev = MCons (A(dt, a') —
(igrl' dt, integralfux (igrl' dt) a'))
where igrl' dt' = igrl + (dt' * a_prev)

Additionally, combinators defined in our library work similarly to combina-
tors in Yampa. For example, their (internal) signal function composition com-
binator compPrim is conceptually the same as our function interleaveReadV,
which was covered in the 10 monad examples section.

Yampa’s concept of signal functions is generalised further in Dunai, a library
with more direct relationship to monadic streams.

7.2 Relation to Dunai

Dunai [15][18] is an FRP library implemented using monadic stream functions
(MSFs), which Yampa has been implemented on top of (see BearRiver [17]).

The library we’ve developed in this article allows for a wide variety of op-
erations on monadic streams. Since the MSFs used in Dunai are a special case
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of monsters (monsters with the underlying functor ReaderT a m, where m is a
monad), many functions in our library could be incorporated into Dunai, giving
a set of potentially useful generalised transformations for MSF networks.

For example, scanM could be used to calculate a stream of intermediate
velocity values from a stream of position values, by taking the difference of each
consecutive position:

positions :: SignalFunc Env Double

speeds :: SignalFunc Env Double
speeds = scanM (A\a b — b - a) positions

Here, Env is just a type representing some environment the signal function
is operating on.

On the other hand, there are many interesting concepts in Dunai which could
be incorporated into new functions in this library, such as their concept of FRP
constructs.

These encapsulate the idea of changing MonStr (ReaderT a (t m)) r where
the underlying monad m is lifted with some monad transformer t, into
MonStr (ReaderT a m) r where the monad transformer t was ’run’ in some
way, leaving only the monad m. If the monad transformer were ListT for ex-
ample, it would give rise to the concept of parallelism with broadcasting.

Monad transformers were only briefly explored in the library, but this indi-
cates that there may be many more constructs we can form when taking them
into account.

Additionally, monadic streams could be a useful extension to MSF based
FRP - as shown in [15], monadic streams can already model an input stream of
data into a reactive program. Using monadic streams instantiated with comon-
ads, you could model input streams where the value of the input (and the rest
of the stream) depends on some environment.

Monadic streams where the underlying functor is a comonad can be seen as
the progressing timeline of an environment under some iterated operation. The
comonad provides the notion of environment, and the stream imbues it with a
notion of its progression in time. This idea only encapsulates current and future
values of the environment, with past states being discarded.

This could be useful to model systems which have some kind of self referen-
tial data store, or environments that can be used to modify themselves.

One possible barrier to using this in practice is that often inputs into a
program, especially in FRP applications, are wrapped in some kind of 10 action.
10 is not comonadic, as there is no way to extract a pure value from it (without
the use of unsafePerformI0, but this is unsafe, as the name suggests). In that
sense, monadic streams with comonads seem to have limited applicability when
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it comes to streams of context-dependent inputs, when those inputs come from
outside of the program.

7.3 Dataflow programming

Another purpuse monadic streams with comonads could be used for is extending
the comonadic approach to dataflow programming, developed in [23], with the
context of other comonads. The idea is that any comonad w can be extended
with the notion of past, present, and future values with MonStr w. Functions out
of the type MonStr m a are context-sensitive computations that are dependent
on arbitrary numbers of future environments of type v a.

7.4 Properties of monadic streams

Many properties of monadic stream functions have been proven in the appendix
[16] to Bérenz, Perez, and Nilsson’s 2016 paper on MSF based FRP [15]. De-
pending on their formulation, these proofs may also show that the same proper-
ties are true for monadic streams, because monadic streams are just MSFs that
ignore their inputs.

One of our goals is to investigate further how this work can be applied to
the context of monadic streams.

8 Conclusions

This project developed a full library for monadic streams (monsters) in Haskell.

We generalised common operations, functions, applications from the stan-
dard List library and libraries on pure streams to work on all monsters. Appli-
cations of our work encompass not only a higher-order version of those libraries,
but also new applications to non-well-founded trees, interactive processes, tran-
sition systems and automata, functional reactive programming, and more.

We proved several important abstract theorems about monsters and outlined
strategies for further mathematical insights. These proofs required original use
of the technique of coinduction, which is a very recent and active area of research.

At this point in the project, a few new problems have come to light, some
related to implementation details of the library, and some to the theory behind
monadic streams and corresponding data structures.

Future work on this library will include a review of the efficiency of many
functions we defined - this project was initially an exercise to see what could
be done with monadic streams, but if this library could be used for larger ap-
plications then efficiency would be an issue. Also, whether all of the functions
work exactly as intended is still uncertain. The functions that are analogous to
those in Data.List have been tested, but we have not yet defined some concrete
semantics to interpret all of the other functions with, meaning we can only be
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sure that their actions on monadic streams are approximately the intended ones.

We discovered, contrary to our initial assumptions, that monadic streams
do not in general form a monad, even if the underlying functor does. We have
sketched a proof of this, but a concrete argument has yet to be developed. We
investigated the causes of this shortcoming and we proposed a conjecture that
that monadic streams are themselves monads when the underlying functor is an
idempotent monad [6]. This seems evident from how our counter-example sketch
is constructed, and it seems to be the case experimentally, but a convincing proof
showing that all of the monad laws hold has yet to be developed.

Additionally, our proofs of the applicative and comonad laws need to be
developed further, and the comonad proofs formalized.

Another angle of interest is to look further into exactly how monadic streams
are different operationally from the cofree comonad over a functor. This is
defined as the final coalgebra of Fiy X = Ax M X, where M is a functor, which
is very similar to the definition of monadic streams in section 2.

The difference is only that there is no first ‘unguarded’ element in a monadic
stream, but this is enough make them function quite differently when instanti-
ated with the same monads.

Finally, whether monadic streams instantiated with comonads could have a
good role in functional reactive programming is still an open problem. It may
also be interesting to look at a dual of Dunai’s monadic stream functions [1§].
The dual of monadic streams are monadic lists:

‘data MonLst m a = m (Either a (MonLst m a)) ‘

Since the type of monadic stream functions is isomorphic to monadic streams
with the reader monad transformer, the dual of monadic stream functions might
be the following:

‘data MSFDual w e a — MonLst (EnvT e w) a ‘

which is essentially a nested tuple, with each layer after the first guarded with
a comonadic action.

‘data EnvT e w a = EnvT e (w a) ‘

Evaluating the comonad with extract or a co-Kleisli arrow will either result
in a final tuple of type (e, a), or another layer of type (e, MonLst (EnvT e w)

This is like an environment from which new values can be repeatedly ex-
tracted from, but at some point the environment will become exhausted, re-
turning a single a instead of a new environment.

The purpose of investigating this is to see whether a monad-comonad in-
teraction law [L0] between the underlying monad in a MSF and the underlying
comonad in a MSFDual instance could be used to define a functor-functor in-
teraction law between these two types, and whether this would have any novel
uses or implications in the contexts we have discussed.
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